COE CST Eleventh Annual Technical Meeting

Human Input Systems for Commercial Space Transportation

Thomas C Eskridge PI Dan Kirk Co-PI, Don Platt Co-PI Troy R Weekes, Researcher

Kazuhiko Momose (PhD student) Andrew Biron (PhD Student)

Agenda

- Team Members
- Task Description
- Schedule
- Goals
- Results
- Conclusions and Future Work

Team Members

- Thomas C Eskridge PI
- Daniel Kirk Co-Pl

Don Platt Co-Pl

- Troy Weekes Researcher
- Kazuhiko Momose HCD PhD Student
- Andrew Biron HCD PhD Student

Task Description

 This project will develop guides for the CST industry in the area of definition and engineering of CST control input devices and systems usable in variable gravity with or without spacesuit.

Control in Variable Gravity

- Control of vehicles require
 - good visual acuity,
 - eye-hand coordination,
 - spatial and geographic orientation perception, and
 - cognitive function.
- Space flight research has demonstrated the effects of variable gravity on each of these requirements

Bloomberg JJ, Reschke MF, Clément GR, Mulavara AP, Taylor LC. NASA evidence report: Risk of impaired control of spacecraft/associated systems and decreased mobility due to vestibular/sensorimotor alterations associated with space flight. 2016. [September 12, 2016]. <u>https://humanresearchroadmap.nasa.gov/Evidence/reports/SM.pdf</u>. [Reference list]

Schedule

SEC CST TASK 398	2020				2021										2022						
Work Package	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
1 - Project Management																					
2 - State of the Art																					
3 - Selection/design of IS and Exp Design																					
4 - Simulation HW and SW update																					
5 - Simulation Execution - HITL									Pro	tocol Dev	/elopme	nt and La	boratory I	Move				Sim	ulation	S	
6 - Data analysis and guides definition																					
Final Report							DR1								DR2						FINAL
IAC,CHAI publication																					
NewSpace publication																					

Goals

- 1. Identify the best human input physio-cognitive control logic and mechanisms for human operators in variable gravity environment
- 2. Identify satisfactory multimodal feedback for confirmation of actions in hyperbaric, variable gravity environment.
- 3. A homing function for input devices can be misinterpreted when using spacesuit and/or operating the vehicle in variable gravity environment. Determine whether an input device should have a homing function and, if so, how it should be communicated to the user.
- 4. Identify the personal physical and cognitive ergonomic features of vehicle occupants that should be driving the cockpit cognitive and physical ergonomics adaptation.
- 5. Determine fundamental rules of how to secure optimal performance of the mission and safety of astronauts in interactions with adaptive automation

Simulating Microgravity

- Microgravity has a number of effects on astronauts and space tourists
- 23% of shuttle astronauts had nearvision changes in flight and 11% post-flight
- 48% of long-term astronauts had vision issues
 - Edema
 - Flattening
 - "wool" spots
 - Kinked optic nerves
- Intraocular pressure differences were noticed as far back as Gemini V and VII

E. Seedhouse (2015), *Microgravity and Vision Impairments in Astronauts,* SpringerBriefs in Space Development, Springer International Publishing Switzerland

FIT Microgravity Simulator

Cognitive Ergonomics

Eskridge, Thomas C, and Weekes, Troy R (2020) **Opportunities for Case-based Reasoning in Personal Flow and Productivity Management**, In Proceedings of the 28th International Conference on Case-based Reasoning (ICCBR-2020) 2020

Fitt's Task

Method

	Upright Seating	Fluid Shift	HDT Position	
Familiarization				
Session	Fitts' Task with Joystick Numpad Touchscreen 	 To simulate IOP effects Approximately 15 min. 	Fitts' Task with Joystick Numpad Touchscreen 	
	Fluid Shift	HDT Position	Fluid Shift (Recovery)	Upright Seating
	To simulate IOP effects Approximately 15 min.	Fitts' Task with Joystick Numpad Touchscreen 	Approximately (X) min.	Fitts' Task with Joystick Numpad Touchscreen

TouchScreen

enter of Excellence for ommercial Space Transportation

TouchScreen

Trackpad

Index of Difficulty vs. Response Time: Orientation: 1 / Device: 1

Index of Difficulty vs. Response Time: Orientation: 2 / Device: 1

enter of Excellence for commercial Space Transportation

Trackpad

Joystick

Index of Difficulty vs. Response Time: Orientation: 1 / Device: 3

Index of Difficulty vs. Response Time: Orientation: 2 / Device: 3

Excellence for ial Space Transportation FAA COE CST Eleventh Annual Technical Meeting (ATM11) 7

6

Joystick

Center of Excellence for Commercial Space Tran

Keypad

Index of Difficulty vs. Response Time: Orientation: 1 / Device: 4

Success

Error

15000

Index of Difficulty vs. Response Time: Orientation: 2 / Device: 4

Keypad

Accuracy Comparison

Response Time Comparison

Accuracy on Width

EEG Measurements

- Signals are processed into cognitive state indicators
- Shaded background areas are trial tasks

enter of Excellence fo

nmercial Space Transportation

EEG Measurements

Orientation and Valence on Track

Center of Excellence for Commercial Space Transportation

FAA COE CST Eleventh Annual Technical Meeting (ATM11)

25

FCA
0
Hi, spacefligh
Workspaces

Tasks

FULL SESSION	
TASKS	EVENTS
TRIAL 1 - UP - TOUCHSCREEN - DIFFICULT - FAILURE	1255.0 MS
TRIAL 2 - UP - TOUCHSCREEN - MEDIUM - SUCCESS	1170.0 MS
TRIAL 3 - UP - TOUCHSCREEN - EASY - SUCCESS	993.0 MS
TRIAL 4 - UP - TOUCHSCREEN - EASY - SUCCESS	1196.0 MS
TRIAL 5 - UP - TOUCHSCREEN - MEDIUM - SUCCESS	1010.0 MS
TRIAL 6 - UP - TOUCHSCREEN - DIFFICULT - FAILURE	1116.0 MS
TRIAL 7 - UP - TOUCHSCREEN - DIFFICULT - FAILURE	1229.0 M5
TRIAL 8 - UP - TOUCHSCREEN - DIFFICULT - SUCCESS	1229.0 MS
TRIAL 9 - UP - TOUCHSCREEN - MEDIUM - SUCCESS	1122.0 MS
TRIAL 10 - UP - TOUCHSCREEN - DIFFICULT - FAILURE	1207.0 MS
TRIAL 11 - UP - TOUCHSCREEN - MEDIUM - SUCCESS	1010.0 MS
TRIAL 12 - UP - TOUCHSCREEN - DIFFICULT - FAILURE	1139.0 MS
TRIAL 13 - UP - TOUCHSCREEN - EASY - SUCCESS	1097.0 MS
TRIAL 14 - UP - TOUCHSCREEN - EASY - SUCCESS	1085.0 MS
TRIAL 15 - UP - TOUCHSCREEN - MEDIUM - SUCCESS	1027.0 MS
TRIAL 16 - UP - TOUCHSCREEN - EASY - SUCCESS	1016.0 MS
TRIAL 17 - UP - TOUCHSCREEN - EASY - SUCCESS	821.0 MS
TRIAL 18 - UP - TOUCHSCREEN - MEDIUM - SUCCESS	1112.0 MS

PREV

Fatigue during trials

Limitations of the Study

Publications, Presentations, Awards, & Recognitions

RELATED PUBLICATIONS

Momose, K., Weekes, T.R., and Eskridge, T.C.(2021). Human-Centered Design for Spaceflight Participant Safety and Experience: A Case Study of Blue Origin Suborbital Flight. *New Space Journal*, online 11 Nov 2021. https://doi.org/10.1089/space.2021.0029

https://www.liebertpub.com/doi/10.1089/space.2021.0029

NEW SPACE Preprint, 2021 © 2021, Mary Ann Liebert, Inc., publishers https://doi.org/10.1089/space.2021.0029

Mary Ann Liebert, Inc. 🔏 publishers

Original Article

Human-Centered Design for Spaceflight Participant Safety and Experience: A Case Study of Blue Origin Suborbital Flight

Kazuhiko Momose¹, Troy R. Weekes¹, and Thomas C. Eskridge^{1,2}

Conclusions and Future Work

- This approach allows for inclusion of speed and accuracy in determining size/distance recommendations
- Differences in HDT mean that designs need to include microgravity differences in perception
- Testing also reveals the effects of fatigue on speed and accuracy, which can enable adaptive automation
- Collecting in-suit trials
- Continuing to analyze data
- Final reporting and publication

