COE CST Tenth Annual Technical Meeting

399-UCF Efficient Uncertainty Quantification, Probability of Collision and Benchmarking

Tarek A. Elgohary

Center of Excellence for Commercial Space Transportation

Agenda

- Team Members
- Task Description
- Schedule
- Goals
- Results
- Conclusions and Future Work

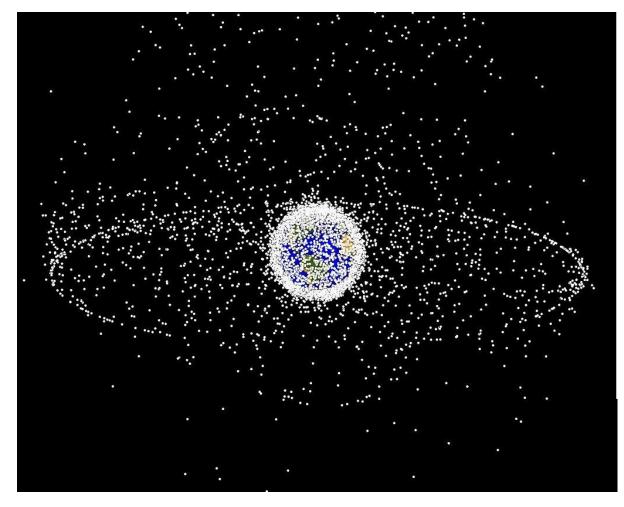
Team Members

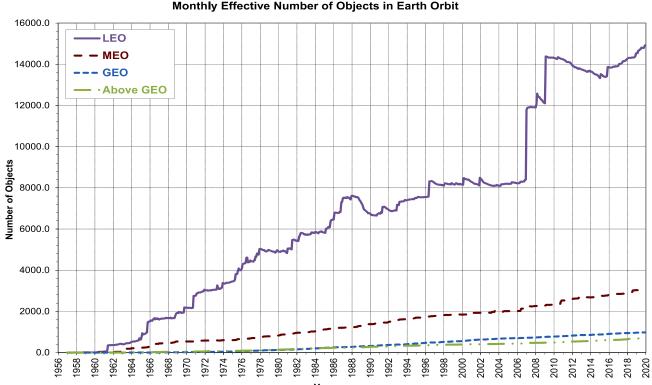
People

Principal Investigator

Ph.D. Student

Tarek A. Elgohary

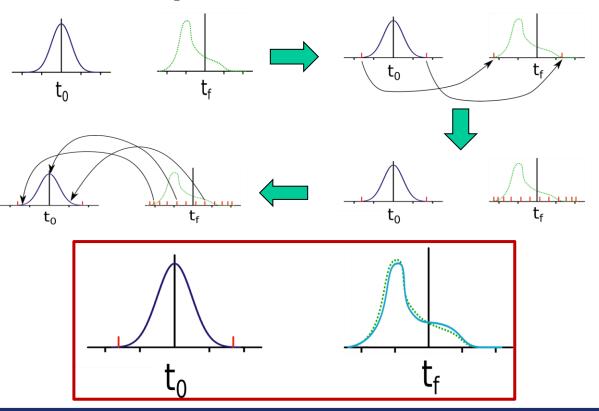

Tahsinul Haque Tasif



Center of Excellence for Commercial Space Transportation

Task Description

- Accumulation of space debris Kessler's Syndrome Sustainability of the space environment
- More and more constellations in Earth orbit SpaceX, OneWeb, India, China, etc.


Center of Excellence for Commercial Space Transportation

Two Approaches for UQ

- Probability Density Function (PDF) via Higher Order State Transition Tensors
 - Evolution of uncertainties $\delta x = \phi_1 \delta x_0 + \phi_2 \delta x_0 \delta x_0 + \cdots$
 - Knowing the probability distribution of δx_0 , the posterior PDF is given by, $P_{\delta x}(\delta x) = P_{\delta x_0}(\delta x_0) \left| \det\left(\frac{\partial g^{-1}(\delta x)}{\partial(\delta x)}\right) \right|$
 - Where, $g^{-1}(\delta x)$ is the Taylor series reversion. Focus of

Today's Talk

 Probability Density Function (PDF) Approximation Techniques

enter of Excellence for commercial Space Transportation

Analytic Continuation Technique

- Analytic Continuation is an integration method applied to solve fundamental problems in Astrodynamics.
- This method has been proven to be highly precise and computationally efficient in orbit propagation.
- The full spherical harmonics gravity model and atmospheric drag model were also incorporated with Analytic Continuation method.

$$f = \mathbf{r} \cdot \mathbf{r} \text{ and } g_p = f^{-\frac{p}{2}}$$
$$\mathbf{r}_0^{(2)} = -\mu \frac{\mathbf{r}_0}{(\mathbf{r}_0 \cdot \mathbf{r}_0)^{3/2}} = -\mu \mathbf{r}_0 f^{-\frac{3}{2}} = -\mu \mathbf{r}_0 g_3$$

Center of Excellence for Commercial Space Transportation

Analytic Continuation - State Variables

• Taylor series expansion to obtain position and velocity:

$$r(t_0 + dT) = r_0 + \sum_{m=1}^n r_0^{(m)} \frac{dT^{(m)}}{m!}$$

$$r^{(1)}(t_0 + dT) = r_0^{(1)} + \sum_{m=2}^n r_0^{(m)} \frac{dT^{(m-1)}}{(m-1)!}$$
The recursive equations to calculate $r_0^{(n)}$, $f^{(n)}$ and $g_p^{(n)}$:

$$\mathbf{r}_{0}^{(n+2)} = -\mu \sum_{m=0}^{n} {n \choose m} \mathbf{r}_{0}^{(m)} g_{3}^{(n-m)} \text{ and } f^{(n)} = \sum_{m=0}^{n} {n \choose m} \mathbf{r}_{0}^{(m)} \mathbf{r}_{0}^{(n-m)}$$

$$g_p^{(n+1)} = -\frac{1}{f} \left\{ \frac{p}{2} f^{(1)} g_p^{(n)} + \sum_{m=1}^n \binom{n}{m} \left(\frac{p}{2} f^{(m+1)} g_p^{(n-m)} + f^{(m)} g_p^{(n-m+1)} \right) \right\}$$

Center of Excellence for Commercial Space Transportation

Analytic Continuation – State Transition Tensors

• Index based First and Second order State Transition Tensors:

$$\phi_{ij}^1 = \frac{\partial \chi_i}{\partial \chi_{0j}}$$
 and $\phi_{ijk}^2 = \frac{\partial^2 \chi_i}{\partial \chi_{0j} \partial \chi_{0k}}$

where, χ_i is the i-th element of the state vector, $\chi = [x, y, z, \dot{x}, \dot{y}, \dot{z}]^T$.

• Taylor series expansion of the terms of the State Transition

Tensors:

$$\begin{split} \varphi_{i=1,\dots,3,jk}^{2}(t+dT,t) &= \frac{\partial^{2}\chi_{i}(t+dT)}{\partial\chi_{j}(t)\partial\chi_{k}(t)} = \frac{\partial^{2}\chi_{i}(t)}{\partial\chi_{j}(t)\partial\chi_{k}(t)} + \sum_{m=1}^{n} \frac{\partial^{2}\chi_{i}^{(m)}(t)}{\partial\chi_{j}(t)\partial\chi_{k}(t)} \frac{dT^{(m)}}{(m)!} \\ \varphi_{i=4,\dots,6,jk}^{2}(t+dT,t) &= \frac{\partial^{2}\chi_{i}(t+dT)}{\partial\chi_{j}(t)\partial\chi_{k}(t)} = \frac{\partial^{2}\chi_{i}(t)}{\partial\chi_{j}(t)\partial\chi_{k}(t)} + \sum_{m=2}^{n} \frac{\partial^{2}\chi_{i}^{(m)}(t)}{\partial\chi_{j}(t)\partial\chi_{k}(t)} \frac{dT^{(m-1)}}{(m-1)!} \end{split}$$

Center of Excellence for Commercial Space Transportation

Schedule

Task	Time Frame
Develop Analytic Continuation for arbitrary order perturbed state transition tensors for accurate error propagation	Fall 2020
Posterior PDF approximation via high-order state transition tensors and computation of probability of collisions	Spring/Summer 2021
Orthogonal Probability Approximation for posterior PDF with parametric uncertainty	Summer/Fall 2021
Computing Probability of collisions of RSOs via two approaches + Benchmarking problems	Spring/Summer 2022

Goals

- Accurate and efficient approaches to quantify uncertainty and compute probability of collision for RSOs
- Benchmarking platform for other methods to provide synthetic or real cases and compare results
- Sustainability of the space environment
- Tools to predict space debris trajectories and potential hazardous events to various operators
- Accurate orbit prediction for newly deployed constellations and their potential collisions with debris and/or other RSOs.

Results

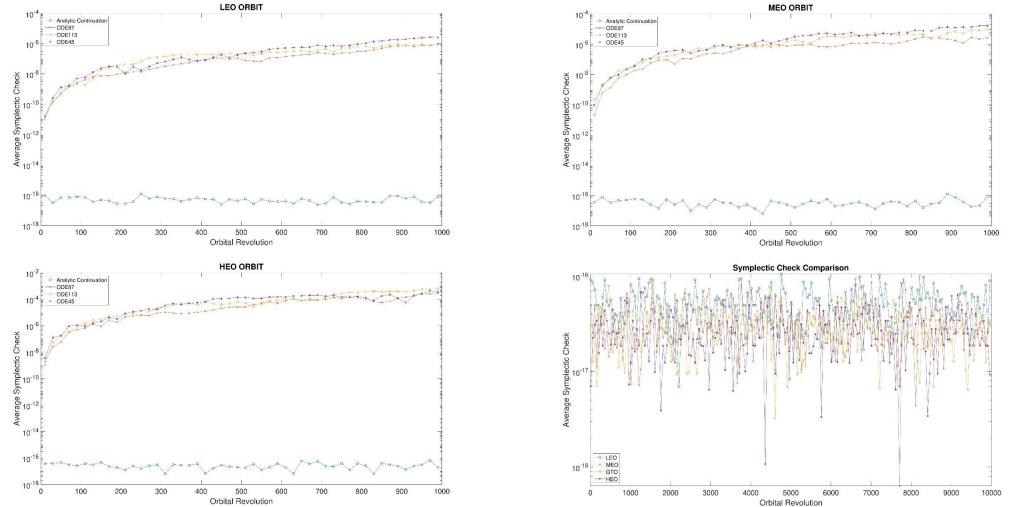


Fig: Symplectic Error in $J_2 - J_6$ gravity perturbed orbits and comparison with MATLAB ODE suite

Center of Excellence for Commercial Space Transportation

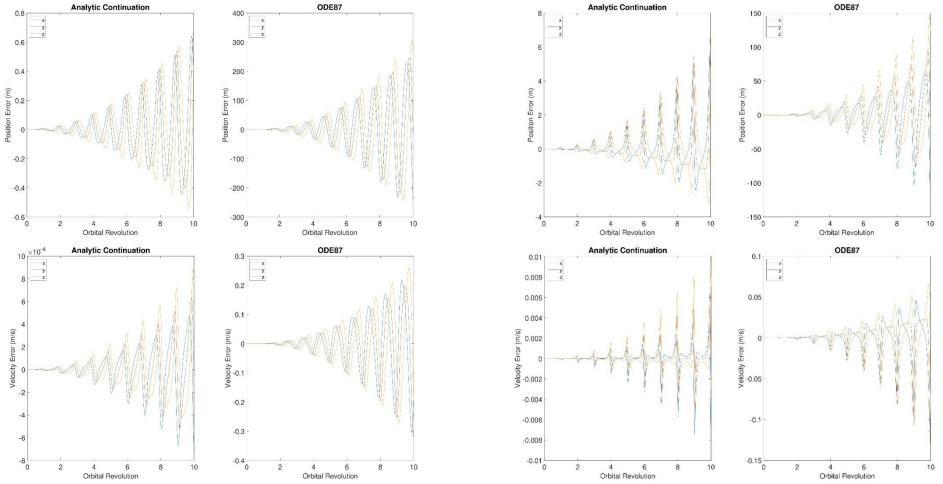


Fig: Linear prediction error of states of $J_2 - J_6$ gravity and drag perturbed LEO and MEO orbit using Analytic Continuation and comparison with ODE87

Center of Excellence for Commercial Space Transportation

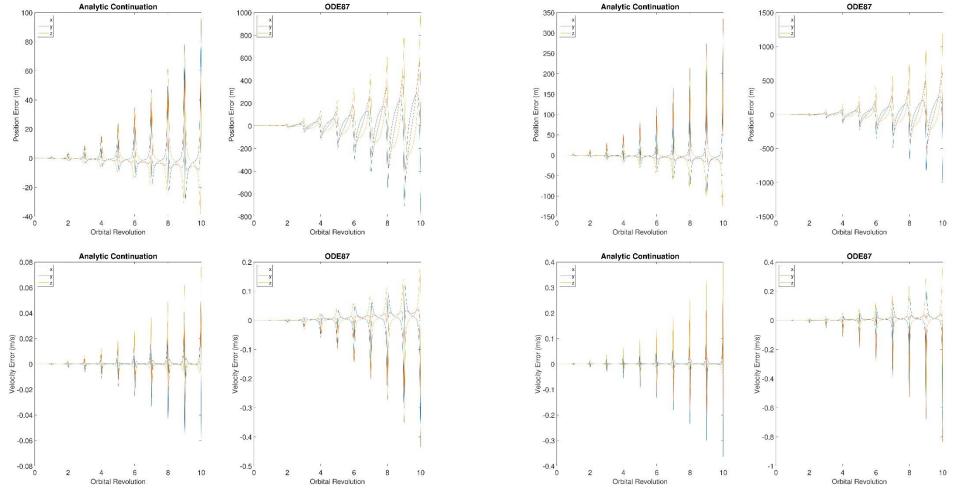


Fig: Linear prediction error of states of $J_2 - J_6$ gravity and drag perturbed GTO and HEO orbit using Analytic Continuation and comparison with ODE87

Center of Excellence for Commercial Space Transportation

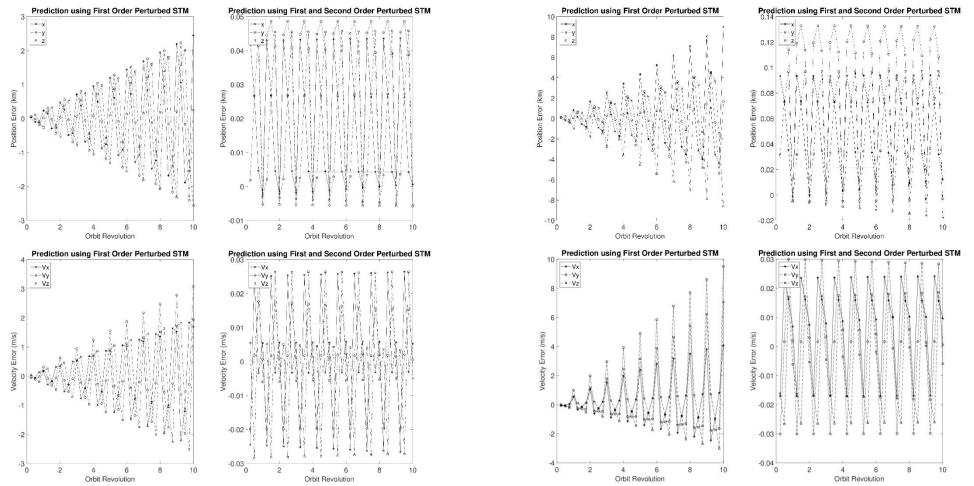


Fig: Linear prediction error improvement of states of J₂ perturbed LEO and MEO orbit using Second Order State Transition Tensor derived using Analytic Continuation technique

Center of Excellence for Commercial Space Transportation

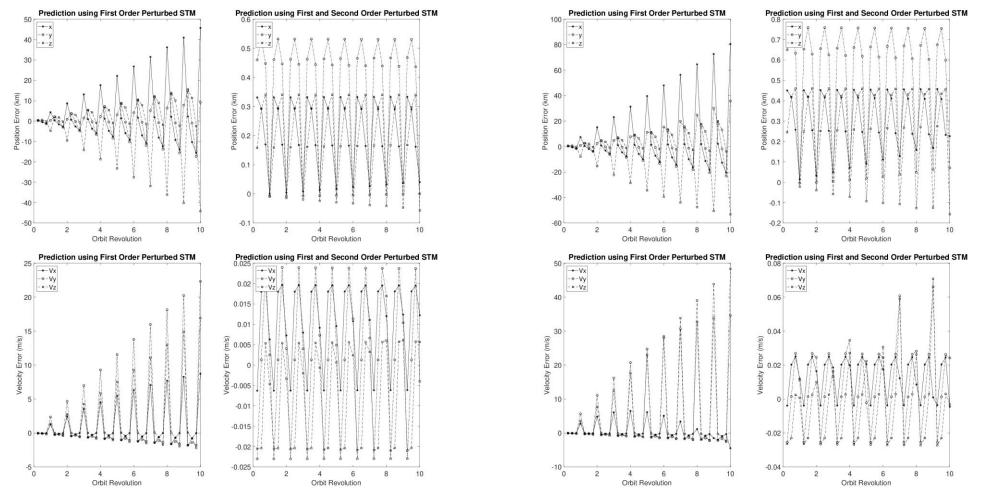


Fig: Linear prediction error improvement of states of J₂ perturbed GTO and HEO orbit using Second Order State Transition Tensor derived using Analytic Continuation technique

Center of Excellence for Commercial Space Transportation

Publications

- Tasif, T.H., Elgohary, T.A.: A high order analytic continuation technique for the perturbed two-body problem state transition matrix, Advances in Astronautical Sciences: AAS/AIAA Space Flight Mechanics Meeting (2019)
- Tasif, T.H., Elgohary, T.A.: An adaptive analytic continuation technique for the computation of the higher order state transition tensors for the perturbed two-body problem, AIAA Scitech 2020 Forum, p. 0958 (2020)
- Tasif, T.H., Elgohary, T.A.: An adaptive analytic continuation method for computing the perturbed two-body problem state transition matrix, The Journal of the Astronautical Sciences (2020), In Press.

Conclusions and Future Work

- Implementation of Spherical Harmonics Gravity model on State Transition Matrix and Higher Order State Transition Tensor is under development now.
- Atmospheric drag model will be implemented on Higher Order State Transition Tensors.
- The results of the current research work will be extended to solve uncertainty quantification of states over time and perturbed Multi Revolution Lambert's Problem.

