COE CST Tenth Annual Technical Meeting

FAA COE CST Task #253: Ultra-High Temperature Composites Thermal Protection Systems

> Jan Gou, Jay Kapat, Derek Saltzman, Haonan Song and Shengheng Gu

Center of Excellence for Commercial Space Transportation

Agenda

- Team Members
- Task Description
- Schedule
- Goals
- Results
- Conclusions and Future Work

Team Members

- People
 - PIs: Drs. Jan Gou & Jay Kapat
 - Students: Derek Saltzman, Haonan Song and Shengheng Gu
- Organizations
 - Industry and Research Partners: Composites Development & Research and Spectral Energies
 - Organizations Providing Matching Funds: University of Central Florida

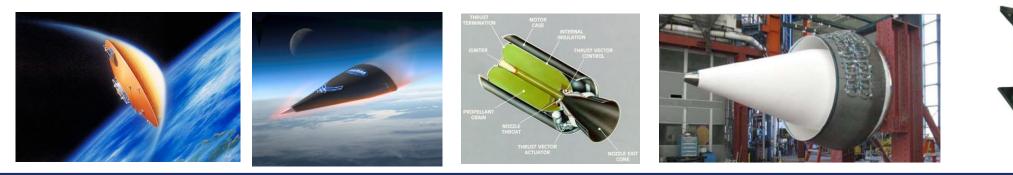
Task Description

- **PDC Precursor Development**: synthesis of polymer derived ceramic (PDC) precursor and modification with nanomaterials (i.e. carbon nanotubes, boron nitride, etc.) for high thermal stability, oxidation stability, and chemical stability
- <u>Manufacturing Process Development</u>: additive manufacturing (AM) process and polymer infiltration and pyrolysis (PIP) process of PDCC thermal protection systems
- <u>Testing & Performance Evaluation</u>: ground testing of PDCC thermal protection systems with oxyacetylene torch test, shock tube test, rocket plume test, and arc jet test
- <u>Thermal-Mechanical Modeling</u>: development of thermal-mechanical models to uncover the thermal damage mechanism

Schedule

2020 - 2021

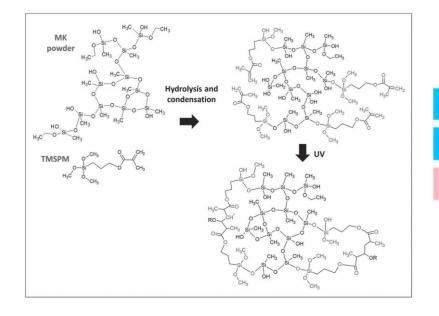
- Q1: Synthesis of polymer derived ceramic (PDC) precursor
- Q2: AM process and PIP process of PDCC thermal protection systems
- Q3: Oxyacetylene Torch Test of PDCC thermal protection Systems
- Q4: Rocket Plume Test and Shock Tube Test of PDCC thermal protection systems

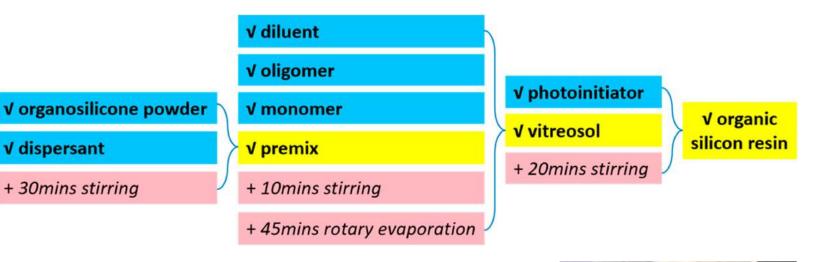

Goals

Research Objective:

Develop polymer derived ceramics composites (PDCC) for **ultra-high temperature**, **light weight**, **low erosion**, and **cost effective** composites thermal protection systems

Relevance to Commercial Space:

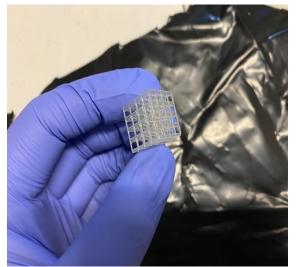

The PDCC thermal protection systems potentially can be used for a variety of applications such as re-entry vehicles, launch vehicles, hypersonic, combustors, gas turbine blades, and heat exchangers in high temperature and high pressure harsh environments.



Center of Excellence for Commercial Space Transportation

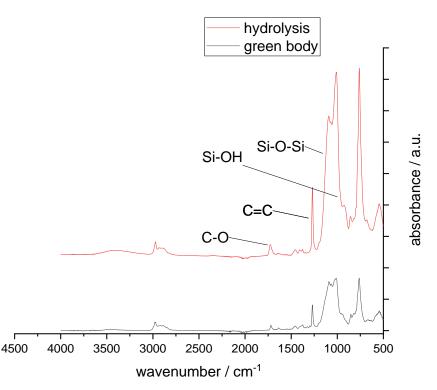
Results: Synthesis of PDC Precursor

- The photosensitive methyl-silsesquoxane preceramic polymer was synthesized from silicone powder (CH₃-SiO_{3/2})x and silicone alkoxide (3-(trimethoxysilyl)propyl methacrylate, TMSPM) through the sol-gel hydrolysis process.
- The radical based photo-initiator 819 (phenylbis (2,4,6-trimethlbenzoyl) phosphine oxide) was used to make the precursor photo-curable.



Center of Excellence for Commercial Space Transportation

Results: Additive Manufacturing and FTIR Characterization



📮 Quality			~
Layer Height		0.05	mm
Initial Layer Height		0.1	mm
Line Width		0.067	mm
Wall Line Width		0.067	mm
Outer Wall Line Width		0.067	mm
Inner Wall(s) Line Width		0.067	mm
Top/Bottom Line Width		0.067	mm
Infill Line Width		0.067	mm
⑦ Speed			⇔
Speed Print Speed		130	✿ ∽ mm/s
-		130 130	·••·
Print Speed	i		mm/s
Print Speed Infill Speed	i	130	mm/s
Print Speed Infill Speed Wall Speed	i	130 130	mm/s mm/s
Print Speed Infill Speed Wall Speed Outer Wall Speed	i	130 130 130	mm/s mm/s mm/s mm/s
Print Speed Infill Speed Wall Speed Outer Wall Speed Inner Wall Speed	ź	130 130 130 130	mm/s mm/s mm/s mm/s
Print Speed Infill Speed Wall Speed Outer Wall Speed Inner Wall Speed Top/Bottom Speed	i	130 130 130 130 130	mm/s mm/s mm/s mm/s mm/s
Print Speed Infill Speed Wall Speed Outer Wall Speed Inner Wall Speed Top/Bottom Speed Travel Speed	ž	130 130 130 130 130 130 300	mm/s mm/s mm/s mm/s mm/s mm/s

Initial Layer Travel Speed

Number of Slower Layers

Maximum Z Speed

- Changes in function groups were detected by FTIR spectrum to confirm the polymerization after 3D printing.
- The declination in peaks of C-O, C=C, Si-O-Si implied that the unsaturated function groups have been converted during the radical photo-polymerization process.

Center of Excellence for Commercial Space Transportation FAA COE CST Tenth Annual Technical Meeting (ATM10)

mm/s

mm/s

300

0

2

Results: Pyrolysis Process and XRD CharacterizationPyrolysis ProcessXRD Characterization

1600

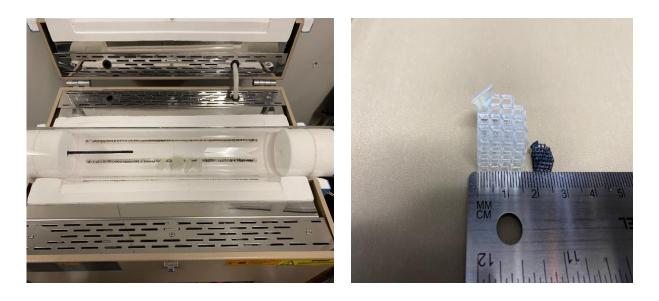
1400 1200

1000 800

600

400

200 +


20

30

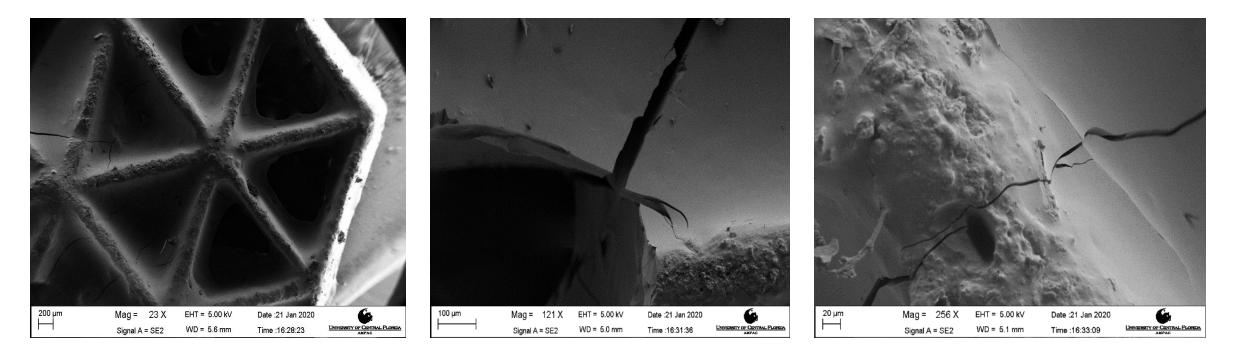
40

20 (deg)

intensity

Pyrolysis Parameters:

The 3D-printed green body was pyrolyzed at 1,000°C for 1 h in nitrogen atmosphere with a heating rate of 1°C/min in a tube furnace.


An absorption peak was observed at 43 degree corresponding to the characteristic diffraction of ß-SiOC, suggesting the possible crystallization of the SiOC ceramics.

SiOC ceramic XRD

Center of Excellence for Commercial Space Transportation

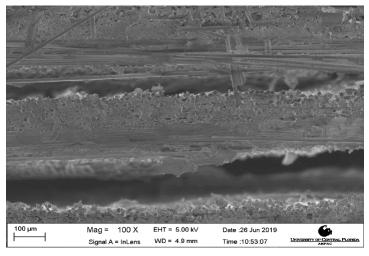
Results: Microstructural Characterization

- Dense structures and smooth surfaces formed on the lattice ceramic structure after the pyrolysis process of the green body.
- Small cracks occurred due to residual thermal stress in the pyrolysis process of the green body.

Results: Polymer Infiltration & Pyrolysis (PIP) Process

Prepregging Stage

Autoclave Curing Stage

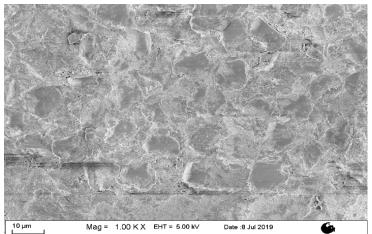

Pyrolysis Stage

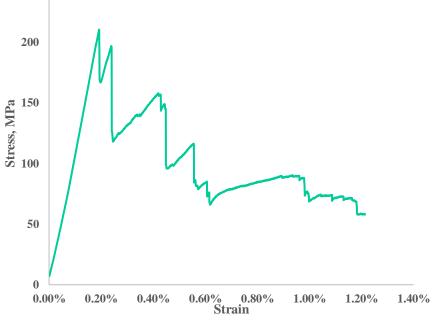
3M[™] Nextel[™] 610 Ceramic Fiber

- Chemical composition: >99% Aluminum Oxide (Al₂O₃), Crystal phase: α-Al₂O₃
- Melting point: 2,000°C, Continuous use temperature (single filament <1% strain): 1,000°C
- Filament diameter: 11-13 um, Filament tensile strength: 2,800 MPa, Filament tensile modulus: 370 GPa
- Density: 3.9 g/cm³

Center of Excellence for Commercial Space Transportation

Results: Microstructural Characterization and Mechanical Testing

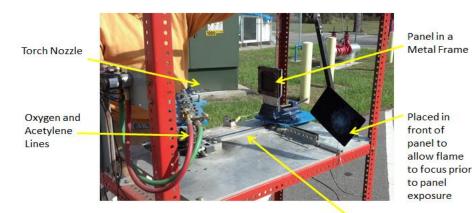



Four-Point Bending

Flexural Strength: $\sigma = 210 MPa$ Flexural Modulus E = 77 GPa

250

Load-Deflection Relationship Flexural strength: $\sigma = \frac{3PL}{4bd^2}$ Flexural strain: $\varepsilon = \frac{4.36Dd}{L^2} \times \frac{8}{11}$

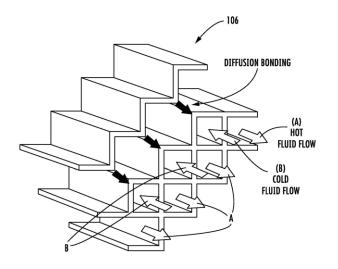


Center of Excellence for Commercial Space Transportation

Results: Oxyacetylene Torch Testing

• Oxyacetylene Torch Testing (On-Going)

 \odot Referencing ASTM E285 \odot Heat flux of 835 W/cm²


Once flame is focused, cover moves out of the way and panel moves forward on rail

Center of Excellence for Commercial Space Transportation

Results: Polymer Derived Ceramic Composites (PDCC) for CMC Heat Exchanger in Harsh Environments

Low Cost PDCC Heat Exchanger

Technical Objective:

Develop high temperature, low-cost and lightweight polymer derived ceramics composites (PDCC) for high temperature, high pressure heat exchanger in powder generation, industrial components and aerospace systems, including supercritical CO_2 cycles.

Technical Approach:

- Materials development of PDCC composites with anisotropic thermal properties
- Manufacturing techniques of the PDCC heat exchanger
- Testing of the PDCC heat exchanger
- Thermo-mechanical and corrosion degradation study of PDCC in high temperature and high pressure environment

Power generation system using closed or semi-closed Brayton cycle recuperator, patented by

- U.S. Patent, Publication No. US10,598,093 B2, Issue date: 03/24/2020
- *European Patent,* Publication No. EP3 277 939 B1, Issue date: 05/06/2020
- World Intellectual Property Organization (WIPO) Patent, International Publication No. W O 2016/161052 A1, International Publication date: 10/06/2016
- Inventors: Jay Kapat, Jihua Gou, Narasimha Nagaiah, Joshua Schmitt

Publications, Presentations, Awards, & Recognitions

PUBLICATIONS

- J. Kapat, J. Gou, N. Nagaiah, J. Schmitt, Power generation system using closed or semi-closed Brayton cycle recuperator, U.S. Patent, Publication No. US10,598,093 B2, Issue date: 03/24/2020
- J. Kapat, J. Gou, N. Nagaiah, J. Schmitt, Power generation system using closed or semi-closed Brayton cycle recuperator, European Patent, Publication No. EP3 277 939 B1, Issue date: 05/06/2020
- J. Kapat, J. Gou, N. Nagaiah, J. Schmitt, Power generation system using closed or semi-closed Brayton cycle recuperator, World Intellectual Property Organization (WIPO) Patent, International Publication No. W O 2016/161052 A1, International Publication date: 10/06/2016
- S.S. Gu, J. Kapat, J. Gou, "Additive Manufacturing of Silicon Oxycarbide Ceramic Structures," CAMX 2020, Orlando, FL, September 21-24, 2020 (Virtual Conference)

PRESENTATIONS

- D. Poljak, D. Saltzman, J. Gou, "Mechanical Characterization and Evaluation of Oxide/Oxide Ceramic Matrix Composites," NSF REU Site: Advamced Technologies for Hypersonic, Propulsion, Energetic, and Reusable Platforms (HYPER) Program, University of Central Florida, August 2, 2019
- S.S. Gu, J. Kapat, J. Gou, "Additive Manufacturing of Silicon Oxycarbide Ceramic Structures," CAMX 2020, Orlando, FL, September 21-24, 2020 (Virtual Conference)

AWARDS

RECOGNITIONS

Center of Excellence for Commercial Space Transportation

Conclusions and Future Work

Final Remarks

- The photosensitive PDC precursor has been developed towards additive manufacturing of ceramic structures.
- The continuous fiber reinforced polymer derived ceramic composites has been developed using the PIP process.

Next Steps

- Formulation optimization of PDC precursor with nanomaterials for high temperature performance.
- Additive manufacturing of continuous ceramic fiber/short fiber reinforced polymer derived ceramic composites.
- PIP Manufacturing of polymer derived ceramic composites reinforced with 3D ceramic fabrics against the inter-laminar delamination caused by the thermal-mechanical loading.

