COE CST Tenth Annual Technical Meeting

Task 377: Nitrous Oxide Composite Case Testing

PI: Bin Lim. Ph.D Co-PI: Andrei Zagrai. Ph.D

Students: Chris Rood, Matt Hirsh, Angel Chavira, Steven Palmer

Center of Excellence for **Commercial Space Transportation**

Center of Excellence for Commercial Space Transportation

Agenda

- Team Members
- Task Description
- Goals
- Theoretical Approaches
- MD Code simulations
- Conclusions and Future Work

Team Members

- PI: Seokbin (Bin) Lim (NMT)
- Co-PI: Andrei Zagrai (NMT)

- Grad Student: Matt Hirsh
- Undergrad Student: Christopher Rood, Angel Chavira, Steven Palmer
- COE CST Program Manager: Ken Davidian (FAA)
- Technical Monitor: Ken Davidian (FAA)

Task Description

Objectives

- Develop an understanding of fragmentation hazards from composite and AI tanks used for fuel/oxidizer storage
- Construction of hypothesis and numerical validation of how cracks form in test samples

Tasks

- Develop methods/hypothesis to predict the crack formation behavior (completed)
- Construction of analytical approach to predict such behaviors (completed)
- 1D Molecular Dynamic code simulation to understand the fundamental mechanism (in progress)

Task Description

Center of Excellence for Commercial Space Transportation

- Construction of 1D extreme tension wave theory (AI 6061)
- Expansion of the theory from 1D to 2D configuration
- Understanding of the wave propagation details during the sample expansion hoping to deliver the clue to see the fragmentation

enter of Excellence for ommercial Space Transportation

Theoretical Approach I

Conservation equations (Tension Hugoniot)

R-Mass
$$\rho_1 = \frac{\rho_0 R^-}{R^- + u_1}$$
 R+Mass $\rho_1 = \rho_2 \frac{R^+ - u_2}{R^+ - u_1}$
R-Momentum $P_1 = \rho_0 R^- u_1$ R+Momentum $P_1 = \rho_2 (R^+ - u_2)(u_1 - u_2)$ From the conservation equations and the speed of tension wave
Combination of those equations $u_1 = \frac{1}{2}u_2$ $P_1 = -\rho_0 s u_1^2$ (or $P_1 = -\rho_0 R u_1$)
 $P_1 = -\rho_0 s u_1^2$ (or $P_1 = -\rho_0 R u_1$)

200

150

100

Pressure (GPa)

Isentrop

sother

Hugoniot

Aluminum

Rayleigh

Center of Excellence for Commercial Space Transportation

Theoretical Approach II

Quasi-Isentrope

- Quasi-isentrope can be easily determined by the measuring the in-situ particle velocity in two different time steps
- Simple and Steady wave propagation assumption

Quasi-Isentropic Compression of Free-Machining (C36000) Brass Paul E. Specht and Seth Root, SNL, NM USA PETER 2016 New Models in Hydrocodes, Le Grand Large, St. Malo, France, 2016

MD Code simulation (LAMMPS)

AI 6061

Center of Excellence for Commercial Space Transportation FAA COE CST Tenth Annual Technical Meeting (ATM10)

9

MD Code simulation (LAMMPS)

Al 6061 Hugoniot graph, LASL Shock Hugoniot Data, UC Press, 1980

10

MD Code simulation (LAMMPS)

FAA COE CST Tenth Annual Technical Meeting (ATM10)

11

Publications, Presentations, Awards, & Recognitions

PUBLICATIONS

Seokbin Lim, et. al. 'Extreme Dynamic Tension and the Profile of Tension Wave', AIP Advances: in review

PRESENTATIONS

Seokbin Lim, Don Ryu, NASA EPSCoR 'AutoCom' Monthly Report, September 2020

Seokbin Lim, Philipp Baldovi, 'Extreme Dynamic Tension: Preliminary Research' APS March Meeting, SCCM, Denver (Online), March 2020

Center of Excellence for Commercial Space Transportation

Conclusions and Future Work

Conclusions

- MD code reveals the wave profile of AI sample during tension
- It was able to plot a pressure-specific volume curve for tension
- Experimental validation is required

Next Steps

- Expansion of this 1D theory to 2D necking theory
- Understanding of the wave patterns and the crack formation

