COE CST Sixth Annual Technical Meeting

Task 186: Space Environment MMOD Modeling and Prediction

Sigrid Close and Diana Madera Stanford University

Las Cruces, NM

Outline

- Team Members
- Task Description
- Methodology
- Results
- Conclusions and Future Work

Team Members

- PI: Sigrid Close (Stanford University)
- Graduate Students (Stanford University)
 - Diana Hernandez Juarez-Madera

- Lorenzo Limonta (supported by NSF)

- Collaborators
 - University of Western Ontario
 - NASA Marshall Space Flight Center

Purpose of Task

- Spacecraft are routinely impacted by micrometeoroids and orbital debris (MMOD)
 - Mechanical damage: "well-known", larger (> 120 microns), rare
 - Electrical damage: "unknown", smaller/fast, more numerous

 Growing need to characterize MMOD down to smaller sizes and provide predictive threat assessment

COE CST Sixth Annual Technical Meeting (ATM6) October 11, 2016

MMOD – Classification

- Meteoroids
 - Speeds
 - 11 to 72.8 km/s (interplanetary)
 - 30-60 km/s (average)
 - Densities
 - $\leq 1 \text{ g/cm}^3$ (icy) or > 1 g/cm³ (rocky/stony)
 - Sizes
 - < 0.3 m (meteoroid)
 - < 62 µm (dust)

- Space Debris
 - Speeds in LEO
 - < 12 km/s
 - 7-10 km/s (average)
 - Densities
 - > 2 g/cm³
 - Sizes
 - < 10 cm (small)

Definitions

<u>Meteoroid</u>

 A small, solid extraterrestrial body that hits the Earth's atmosphere

• <u>Meteor</u>

Signature of the meteoroid entering Earth's atmosphere ("Shooting Star")

<u>Meteorite</u>

- Meteoroid that has survived to hit the Earth's surface

Meteors: Experiment

- CAMO: Canadian Automated Meteor Observatory
 - Two observatory stations separated by 44.9 km: Eigenfield and Tavistock
 - Wide field camera with FOV 26° x 19°
 - 110 frames per second, Meteor r

COE CST Sixth Annual Technical Meeting (ATM6) October 11, 2016

Center of Excellence for Commercial Space Transportation

Meteors: Light Curve

• METAL: METeor AnaLysis software (UWO)

COE CST Sixth Annual Technical Meeting (ATM6) October 11, 2016

Center of Excellence for Commercial Space Transportation

Meteors: Preliminary Results

Conclusions and Future Work

- New student (Diana) researching meteoroid and orbital debris fragmentation
- New optical observations for meteoroid fragmentation
 - Model describe sudden and simultaneous detachment of the particle
 - Traditional models not capturing relevant physics
 - Additional data and modeling efforts needed

Next steps

- Combine optical and radar data
- Develop new ablation models

Thank you!

COE CST Sixth Annual Technical Meeting (ATM6) October 11, 2016

Center of Excellence for Commercial Space Transportation 11