COE CST Sixth Annual Technical Meeting:

Task 186: Mitigating threats through space environment modeling/prediction

PI: Tim Fuller-Rowell Student: Catalin Negrea

October 11, 2016 Las Cruces, NM

Team Members

University of Colorado Boulder

Tim Fuller-Rowell, Tomoko Matsuo, Houjun Wang, Tzu-Wei Fang

Cooperative Institute for Research in Environmental Sciences (CIRES) University of Colorado, Boulder and NOAA Space Weather Prediction Center

Catalin Negrea

Student, Electrical, Computer, and Energy Engineering, University of Colorado

Mihail Codrescu, Rodney Viereck, Mark Iredell

NOAA Space Weather Prediction Center, Boulder, CO and Environmental Modeling Center, Camp Springs, MD

Jeffrey Forbes

Aerospace Engineering Sciences, University of Colorado, Boulder

COE CST Sixth Annual Technical Meeting (ATM6) October 11, 2016

Task Description

Goal:

1. Knowledge of the environmental conditions and their impact on flight conditions from the ground to 600 km, including forecast of:

 Neutral density, variability, and structure, for spacecraft drag for orbit prediction and collision avoidance, and forecast of near-surface and space weather conditions (winds, wind shear, temperature, variability and turbulence, storms, lightning, etc.),
Plasma density, D-region absorption, total electron content, ionospheric structure and irregularities, for communications and navigation

Objectives: Fill the gap between terrestrial and space weather forecasts and develop a "weather" prediction model extending from Earth's surface to the top of the atmosphere

Outcome: Predict <u>the environmental conditions</u> needed for safe orbital, sub-orbital, re-entry, descent, and landing

Current: Aviation Weather Support

: conditions below 50 km from National Weather Service Global Forecast System (GFS) model and Gridpoint Statistical Interpolation (GSI) data assimilation system

- Winds and temperature
- Turbulence
- Icing
- Analysis and Forecasts

So what is Space Weather?

Solar Flares (increased X-ray flux)

Arrives: 8 mins; Duration: 1-2 hrs Impacts: D-region ionization, High Frequency (HF) radio absorption, geolocation, low-frequency navigation, GPS navigation

Coronal Mass Ejections (plasma)

Arrives: 1-3 days; Duration: 1-2 days Impacts: Drives a geomagnetic storm, satellite charging, drag, communication, navigation (e.g., GPS), HF communication, ground induced currents (power outages)

Solar Proton Events (energetic particles)

Arrives: 15 mins to a few hours; Duration: days Impacts: Polar HF absorption, satellite anomalies, radiation hazard

COE CST Sixth Annual Technical Meeting (ATM6) October 11, 2016

Filling the Gap – weather and space weather

- We have developed a global seamless neutral whole atmosphere model (WAM) 0-600 km, 0.25 scale height, 2° x 2° lat/long, hydrostatic, 10-fold extension of Global Forecasting System (GFS) US weather model.
- O₃ chemistry and transport
- Radiative heating and cooling
- Cloud physics and hydrology
- Sea surface temperature field and surface ex processes
- Orographic gravity wave parameterization
- Eddy mixing and convection
- Diffusive separation of species
- Composition dependent C_p
- Height dependent g(z)
- EUV, UV, and non-LTE IR
- Ion drag and Joule heating

Coupled to a global ionosphere, plasmasphere, electrodynamics module (IPE) for plasma parameters

Temperature 200 km altitude Sep 03 UT00:00 200km WAM T

Neutral density CTIPe vs GOCE and CHAMP

CTIPe Neutral Density at 265km

22-Jan-2012 08:55UT

COE CST Sixth Annual Technical Meeting (ATM6) October 11, 2016

SED Storm enhanced density

Inversion TEC(TECU) 30-Mar-2001 19:00:00UT Inversion TEC(TECU) 31-Mar-2001 19:00:00UT 120 120 Ľ Ľ 00 100 100 80 80 60 60 40 40 20 20 0 ٥ Quiet Disturbed

COE CST Sixth Annual Technical Meeting (ATM6) October 11, 2016

Summary

- Goal is to define the weather and space weather conditions for orbital and suborbital flights for commercial space transportation
- Integrate the terrestrial and space weather conditions (from one coordinated source)
- Are developing a seamless model from the ground to 600 km altitude coupled to the plasma to fill gap between conventional weather and space weather
- Provide neutral atmosphere weather forecast for winds, temperature, density, turbulence, wind shears, deviations from average, and vehicle drag
- Ionospheric space weather forecast for plasma density, ionospheric structure, and irregularity conditions for communications and navigation
- Radiation hazard (e.g., NAIRAS potential new start)

