COE CST Seventh Annual Technical Meeting

Task 186: Space Environment MMOD Modeling and Prediction

Sigrid Close and Nicolas Lee

Students: Diana Madera and Lorenzo Limonta

Stanford University

October 10, 2017 Las Cruces, NM

Agenda

- Team Members
- Task Description
- Goals
- Results
- Conclusions and Future Work

Team Members

- PI: Sigrid Close
- Research Staff: Nicolas Lee

Graduate Students

- Diana Hernandez Juarez-Madera
- Lorenzo Limonta (supported by NSF)

Collaborators

- University of Western Ontario
- NASA Marshall Space Flight Center

Task Description

- Spacecraft are routinely impacted by micrometeoroids and orbital debris (MMOD)
 - Mechanical damage: "well-known", larger (> 120 microns), rare
 - Electrical damage: "unknown", smaller/fast, more numerous

 Growing need to characterize MMOD down to smaller sizes and provide predictive threat assessment

MMOD – Classification

- Meteoroids
 - Speeds
 - 11 to 72.8 km/s (interplanetary)
 - 30-60 km/s (average)
 - Densities
 - $\leq 1 \text{ g/cm}^3$ (icy) or > 1 g/cm³ (rocky/stony)
 - Sizes
 - < 0.3 m (meteoroid)
 - < 62 µm (dust)

- Space Debris
 - Speeds in LEO
 - < 12 km/s
 - 7-10 km/s (average)
 - Densities
 - > 2 g/cm³
 - Sizes
 - < 10 cm (small)

Goals

- Particle impacts in atmosphere: probability of impact
- Particles impacts on spacecraft: effects of impact

Methodology

Center of Excellence for Commercial Space Transportation

Results: Probability of Impact

Results: Effects of Impact

COE CST Seventh Annual Technical Meeting (ATM7) October 10, 2017

Conclusions and Future Work

• Characterize probability of MMOD impact

- Meteoroid: remote sensing of plasma and scattering model provides flux, mass, density
- Space debris: remote sensing of particles and shape modeling provides flux, mass

Characterize effects of MMOD impact

- Space debris: Light-gas gun experiments + impact/plasma modeling
- Meteoroid: Van de Graaff experiments + impact/plasma modeling

Future work

- Plasma limit equation
- Orbital dynamics

