Optimal Aircraft Rerouting During Commercial Space Launches

Rachael Tompa Mykel Kochenderfer Stanford University

Motivation

Problem:

- Launch vehicle anomaly can lead to 10,000+ pieces of debris
- Projected increase in commercial space launches Current process: FAA shuts down large column of airspace
- Airspace shut for hours causing many aircraft reroutes
Research area: FAA is investigating methods to reduce airspace disruptions while maintaining airspace safety

Motivation Continued

Dynamic restrictions would:

- Allow safety zones to change throughout launch trajectory and launch vehicle health
- Account for uncertainties
- Adapt to any anomalies
- Promote efficiency
- Ensure safety

Proposed solution:
Model problem as a Markov Decision Process and solve for optimal policy

Outline

$>$ Commercial Space Launch Scenario

>Problem Formulation

\rightarrow Results

>Conclusions

Scenario

Launch Environment

- Cape Canaveral
- October

Aircraft: Boeing 777-200

- Cruise Speed at $35,000 \mathrm{ft}(10.7 \mathrm{~km})$: 0.84 Mach
- Turn Rate: standard rate (3° per second) and half standard rate (1.5° per second)

Launch Vehicle

Vehicle: Two-stage-to-orbit rocket Trajectory:

- Derived longitude latitude altitude position
- Modeled as a 2D trajectory using east and north coordinates of the east north up reference frame

Debris Model

Look at 11 types of debris

- Ballistic coefficient, size, weight
Update trajectory at every time step
- Launch vehicle state vector as the initial state
- Trajectory found with RSAT

RSAT Weather Inputs

Model: Global Forecast System
Location: Kennedy Space Center
Range: 1 to 25 km
Inputs at each Height:

- Latitude and longitude position of measurement
- Mean density
- Density standard deviation
- Wind velocity in up, west, and south directions
- Wind velocity standard deviations

For initial implementation, all inputs are the average of a month's worth of data

Safety Thresholds

Where

Location debris trajectory intersects 35,000 feet
Ellipse around location

- Minor axis $=500$ feet
- Major axis $=1000$ feet in direction of launch vehicle at time of anomaly

When

Time debris trajectory intersects 35,000 feet ± 20 sec Anomaly is modeled for that time step ± 10 sec

Outline

>Commercial Space Launch Scenario

>Problem Formulation

- Results

>Conclusions

Markov Decision Process Overview

S is the state space: a set that contains all possible states

A state $s \in S$ captures:

- Aircraft position
- Aircraft heading
- Time of anomaly
- Time since launch

Step k
Step $k+1$

Markov Decision Process Overview

A is the action space: a set that contains all possible actions An action $\mathrm{a} \in \mathrm{A}$ corresponds to:

- heading change advisory

Markov Decision Process Overview

\mathbf{R} is the reward model:

- Current state, s
- Action, a
- Immediate reward: R(s, a)
- Reward penalizes disruption and violations of safety thresholds

Markov Decision Process Overview

T is the transition model

- Current state, s
- Action, a
- New state, s'
- Probability of transitioning to s^{\prime} :

T(s's, a)

- Captures uncertainty in the launch vehicle and aircraft trajectories

Step k
Step $k+1$

Aircraft State Space

Variable	Discretization	Units
e	$-25,000,-23,000, \ldots, 51,000$	meters
n	$-45,000,-43,000, \ldots, 65,000$	meters
ψ	$0,15, \ldots, 360$	degrees
$t_{\text {anom }}$	NIL $, 0,10, \ldots, 110$	seconds
t	$0,10, \ldots, 810$	seconds

Grid: State space modeled as a 5 dimensional grid with all possible combinations of the components

- 58,203,600 possible states

Action Space

Possible Actions

- 15° heading changes (for 10 second intervals) from 0° to 360°
- An additional aircraft action, NIL

NIL (No Advisory)

- If there is no advisory, the aircraft follows a normal distribution
- This representation accounts for future aircraft trajectory uncertainty

Transition Model

Heading Update

- If NIL, there is a normal distribution of possible headings
- If advised heading is current heading, pilot always responds
- If advised heading is new heading, pilot responds 50\% of the time (average response delay $=20 \mathrm{sec}$)

Transition Model

Time of Anomaly Update

- If an anomaly has already occurred, $\mathrm{t}_{\text {anom }}$ does not change
- If an anomaly has not occurred, 5.2% of the time, an anomaly occurs at the next time step
- The anomaly rate is equivalent to 50% over the duration of the first stage

Time Update

- Time increments by 10 sec

Step k
Step $k+1$

Transition Model

Position Updates

$$
\left[\begin{array}{l}
e \\
n
\end{array}\right] \leftarrow\left[\begin{array}{l}
e+v \sin (\psi) \\
n+v \cos (\psi)
\end{array}\right]
$$

- $\mathrm{v}=0.84$ Mach

Comments

- Values are interpolated if not exactly on a grid node
- MDP terminates at 810 sec

Step k
Step $k+1$

Reward Model

Reward $=\lambda r_{\text {eff }}+r_{\text {saf }}$

Efficiency	
$\psi=$ NIL	0
No Change	-0.01
ψ Change $\leq 30^{\circ}$	-1
ψ Change $>30^{\circ}$	$-\infty$
Safety	
\leq Threshold from Launch Vehicle	-1
$>$ Threshold from Launch Vehicle	0
\leq Threshold from Debris	-1
$>$ Threshold from Debris	0

Solution

Returns:

- Policy: action for every possible state
- Optimal policy maximizes immediate rewards(utility):

$$
U^{*}(s)=\max _{a \in A}\left[R(s, a)+\sum_{s^{\prime} \in S} T\left(s^{\prime} \mid s, a\right) U^{*}\left(s^{\prime}\right)\right]
$$

Method: Backward Induction Value Iteration

- Cycles over all of the possible states and actions Backward induction allows a single sweep through all of the states
Computing an optimal policy required ten minutes on 20 Intel Xeon E5-2650 cores running at 2.4 GHz

Outline

>Commercial Space Launch Scenario

>Problem Formulation

$>$ Results

>Conclusions

Utility Results

Aircraft headed 225°, Anomaly at 80 s after launch

0 s after launch:

- No anomaly knowledge
- Knowledge on debris trajectories
- Pilot response rate
- Launch vehicle traverses at 50 sec

50 s after launch:

- Region with a negative utility where Launch vehicle traverses

Utility Results

Aircraft headed 225°, Anomaly at 80 s after launch

250 s after launch and 400 s after launch:

- Positions of the debris known
- Positions of debris or future debris
 have large negative utilities
- Negative utilities cover direction of the aircraft leading to those locations

Policy Results

Aircraft headed 225°, Anomaly at 80 s after launch

0 s after launch:

- No anomaly knowledge
- Knowledge on debris trajectories
- Pilot response rate
- Launch vehicle traverses at 50 sec

50 s after launch:

- Too late to direct around Launch vehicle
- Too early to direct around potential debris

Policy Results

Aircraft headed 225°, Anomaly at 80 s after launch

250 s after launch and 400 s after launch:

- Positions of the debris known and direct around where they will be
- Many maintain actions as expected and desired
- 15° and 30° cost the same so more 30° actions

Scenario Simulation Results

- Real Flights - Cape Canaveral
- Simplified temporary flight restriction representation
- 100 different start times
- Varying times of anomaly
- Results weighted based on likelihood

	Nominal	Historic	Proposed
\% Rerouted	0.00	100.00	2.90
Average Added Distance (m)	0.00	8654.30	106.00
\% Traverse $10 \times$ Safety Region	0.86	0.00	0.00

Efficiency Trade-Off Analysis

Reward $=\lambda r_{\text {eff }}+r_{\text {saf }}$

Investigation on the weighting of efficiency vs. safety

Conclusions

- Modeled commercial space launch and interactions with aircraft as MDP
- Dynamic safety regions much smaller than historic static regions
- Compared to historic safety regions, proposed safety regions result in fewer rerouted flights, smaller flight deviations during reroutes, and no degradation of safety
- Number of aircraft rerouted with proposed system is approximately 3% of the historically rerouted flights

Future Work

- Investigate additional metrics with the use of FACET
- Continue efficiency trade-off analysis
- Model additional debris trajectories
- Explore necessity of real time weather information

Thank you, Questions?

