
COE CST Fifth Annual Technical Meeting

Task 306 UAT ADS-B Research and Demonstration for Commercial Space Applications: Progress Report

Richard S. Stansbury

Student: Brandon Neugebauer Dominic Tournour Dylan Rudolph Richard Day Yosvany Alonso

October 27-28, 2015 Arlington, VA

Agenda

- Team Members
- Project Overview
- Collaboration with Terminal Velocity Aerospace
- Maturation plan and follow-on research plans

Team Members

People

- Principal Investigators: Richard S. Stansbury
- Students: Brandon Neugebauer, Richard P. Day, Yosvany Alonso, Dyland Rudolph, and Dominic Tournour
- Other faculty: William C. Barott, Massood Towhidnejad
- FAA: Nick Demidovich, Chuck Greenlow, John Dinofrio, and others.
- MITRE: Dave Edwards

Organizations

- Terminal Velocity Aerospace, LLC.
 - Dominic Depasquale
- NASA Flight Opportunities Program
 - Up Aerospace
 - Near Space Corporation

Goals

- Enhance tracking of vehicles as they traverse through the national airspace system to mitigate the impact of commercial space operations on routine aviation operations
- Sub-goals goals:
 - Determine suitability for ADS-B for commercial space
 - Determine boundary conditions of system performance
 - Assess performance of prototypes on space vehicles and suitable analogues
 - Identify areas of improvement in ADS-B standard to accommodate ADS-B operation
 - Provide stakeholders with information regarding suitability of ADS-B as a primary or secondary tracking source

MITRE UBR-TX

- UAT Beacon Radio Transmit Only (UBR-TX)
 - Broadcasts state vector once per second
 - Supports both barometric and GPSbased altitudes
- Balloon / Rocket Flight Tests
 - 2008 Red Glare V (amateur rocket)
 - 2009 Red Glare VII (amateur rocket)
 - 2010 AFRL research balloon
 - 2010 NASA Wallops sounding rocket
 - 2012 Up Aerospace Spaceloft 6
 - 2012 Team America Rocket Challenge
 - 2013 Up Aerospace Spaceloft 7
 - 2013 Masten Xombie

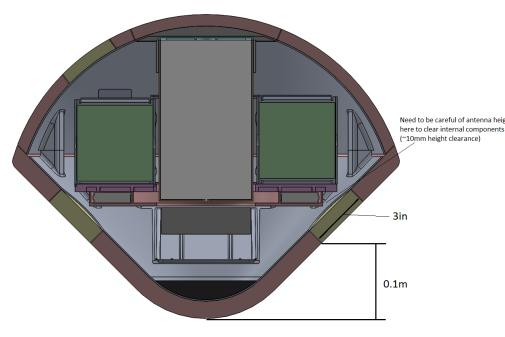
Past Flights:

- NSC Nano Balloon System
- NSC High Altitude Shuttle System
- Up Aerospace SpaceLoft-8
- NSC Small Balloon System w/ TVA Spacecraft

Maximum Altitude: 349,700 ft (SL-8)

Parameter	Specification
Length	5.75" (14.6 cm)
Width	2.5" (6.35 cm)
Height	2.5" (6.35 cm)
Weight (UBR board, daughter board, GPS, battery, and enclosure)	790 g (27.9 oz)
Weight (cables, antennas, etc.)	85-300g est.
Nominal power Consumption	840mA @ 3VDC
Nominal battery capacity	7.75 Ah

UBR-ERAU Advanced ADS-B Transmitter for sRLVs


Upgraded firmware and GPS hardware

COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

Terminal Velocity Aerospace

- Integration of Advanced ADS-B Unit onboard reentry vehicle
- Funded by NASA Ames
- Goals:
 - Evaluate performance of ADS-B broadcasting through experimental TPS material
 - Demonstration of UBR on new vehicle type

Link Budget Analysis

Link Budget ADS-B					
					-124.00 Received Power vs. Altitude
	Symbols	Data	Units	Deviation	
Frequency	f ₀	978	MHz	0.3125	
Wavelength	λ	0.30654	m	0.000006	-126.00
Modulation Rate	В	1.041667	Megabits/sec		
Altitude	h	45.72	km		
Distance	d	241.4	km		-128.00
Offset Angle	θ	10.72	degrees		S S
	<u>Symbols</u>	<u>Gain/Loss</u>	<u>Units</u>	<u>Equation</u>	
Transmitter	Ртх	8.5	dBW		—150 Miles
Transmitter Cable	LTX	0.9	dB		2 — 150 Miles
Transmitter Antenna	GTX	4.6	dBi		te -132.00 — 200 Miles
TPS Window	Lм	0	dB	Not Disclosed	ي
				FSPL=20	—250 Miles
				log_10[(4*π/C	
Free Space	Lfs	140.1	dB)*f₀*d]	-134.00
Pointing Loss Tran		1.0	dB		
Pointing Loss Rec	Lp	1.0	dB		
Polarization Loss	Lн	3.0	dB		-136.00
Receiver Antenna	Grx	7.0	dBi		
Receiver Cable	Lrx	0.9	dB		-138.00
Signal Present at	Prx	-123.8	dBW		0 50,000 100,000 150,000 200,000 250,000 300,000 350,000
Receiver		-126.8	dBW		Altitude (Feet)
Margin		-2.8	dBW		
		-5.8	dBW		

Amplification needed with TPS material added as altitude is increased. Note: TPS material unknown and not included in models shown.

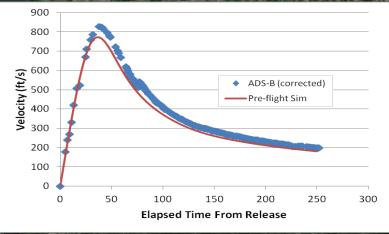
COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

Terminal Velocity Aerospace Reentry Vehicle Drop from stratospheric balloon

COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

Center of Excellence for Commercial Space Transportation

Terminal Velocity Aerospace Reentry Vehicle Drop from stratospheric balloon


- Dropped from 100Kft ADS-B payload reported at all times in flight
- Was useful in finding vehicle in landing location in forest!
- Balloon gondola also had ERAU ADS-B out payload
- First known flight with
 - ADS-B on both balloon and ballistic payload
 - Tranmission through heat shield

Center of Excellence for Commercial Space Transportation

2100 ft 0 ft 81.1% 11.4 mph 6/22/15 6:30 PM

vcs10_A55A05-ERAU0005-Corrected-Alt

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat © 2015 Google

((C'00)('00)

Technology maturation plan

- Project goal to demonstrate viability and test functional envelope of experimental ADS-B payload for sub-orbital commercial space operations
 - TRL-7, proven within its operational environment
- Additional flights needed before transition to TRL-8 (i.e. move out of prototype phase)
- Diversity of new vehicles is desirable to get operator feedback
- Conduct research to address issues with current ADS-B message standards as no message type for space vehicle yet developed / approved.

Planned Future Commercial Space Flights with Experimental ADS-B Payloads

- Near Space Corporation's High Altitude Shuttle System
 - Surrogate winged suborbital vehicle performing a descent into NAS (from above 60, 000 feet) ASAP
- SL-11 reflight with GPS through boost phase (16Gs for 12 seconds with FOP – Spring 2016 First time to pull high-g's with live data
- TVA vehicle upgrades proposal developed
- Large amateur rocket to >100 miles in consideration
- SL-12 mixed airspace demo with UAS TBD
- Virgin Galactic SpaceShip 2 (TBD)

Source: Near Space Corporation

Planned Future Commercial Space Flights with Experimental ADS-B Payloads

- Expendable Launch Vehicle
 - Currently in planning stages for first stage
 - fly back booster
 - expendable
- Cubesat or International Space Station
 - Investigating opportunities for cubesat integration or a ISS flight
 - Proof of concept for on-orbit application

Source: Near Space Corporation

Questions?

Image courtesy of UpAerospace Inc.

Embry-Riddle Aeronautical University

Richard Stansbury, <u>stansbur@erau.edu</u> Massood Towhidnejad, <u>towhid@erau.edu</u> Dominic Tournour, <u>TOURNOUD@my.erau.edu</u>

FAA Office of Commercial Space

<u>Transportation</u> Nick Demidovich, <u>nickolas.demidovich@faa.gov</u>

FAA William J. Hughes Technical Center

Chuck Greenlow, <u>chuck.ctr.greenlow@faa.gov</u> John DiNofrio, <u>john.dinofrio@faa.gov</u>

<u>MITRE</u>

Dave Edwards, davee@mitre.org

