
COE CST Fifth Annual Technical Meeting

Task 299: Nitrous Oxide Composite Case Testing

PI: Warren Ostergren Co-PIs: Bin Lim, Andrei Zagrai

COE CST Program Manager: Ken Davidian (FAA) Technical Monitor: Yvonne Tran (FAA) Technical Monitor: Don Sargent (FAA)

October 27-28, 2015 Arlington, VA

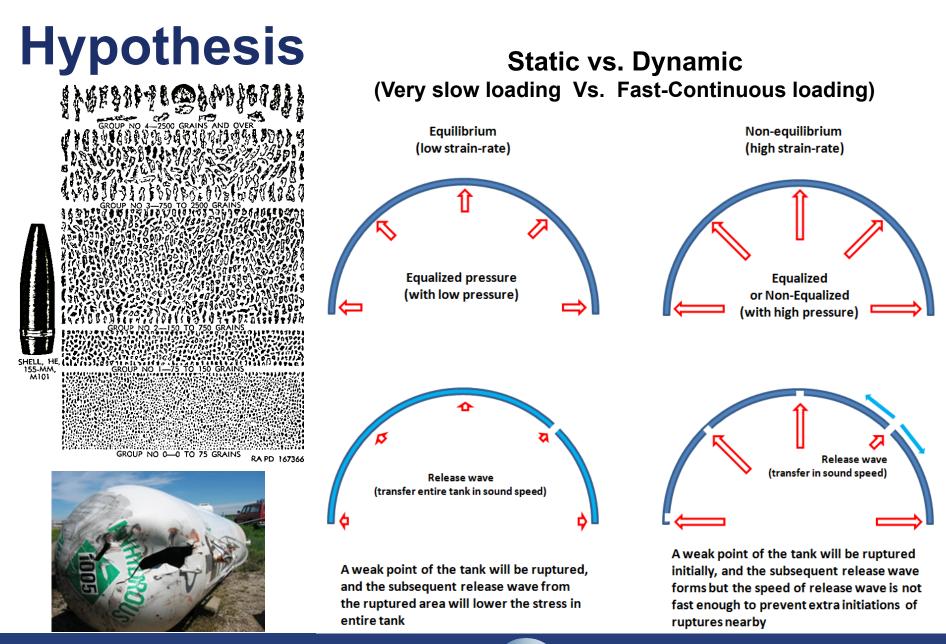
Agenda

- Team Members
- Task Description / Goals
- Schedule
- Hypothesis
- Results
- Conclusions and Future Work

Team Members

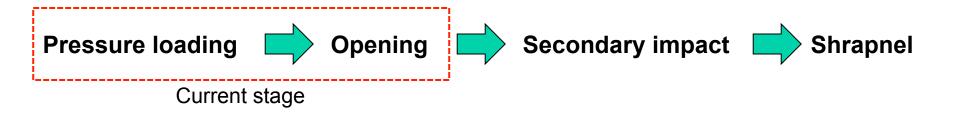
- PI: Warren Ostergren (NMT)
- Co-PI: Seokbin (Bin) Lim (NMT)
- Co-PI: Andrei Zagrai (NMT)
- Student: Antonio Garcia (NMT)
- Student: Steven Sweeney (NMT)
- Test Engineer: Meliton Flores (EMRTC)
- COE CST Program Manager: Ken Davidian (FAA)
- Technical Monitor: Yvonne Tran (FAA)
- Technical Monitor: Don Sargent (FAA)

Task Description / Goals

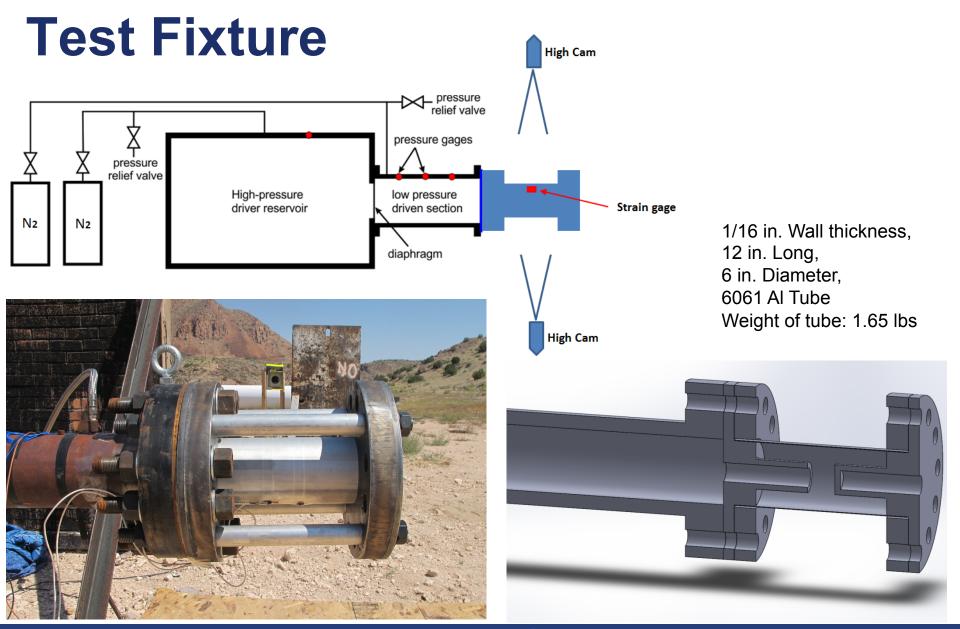

- Objectives
 - Develop an understanding of fragmentation hazards from composite tanks used for fuel/oxidizer storage
 - Construction of hypothesis and experimental validation of how cracks form in test samples
- Tasks
 - 5 tests each of AI 6061 & composite material tubes to understand the crack opening behavior (10 tests total)
 - Develop methods to predict crack opening behavior
 - Develop standard test procedures for composite materials under shock and high-rate loading
 - Numerical simulations to predict the fragmentation (in progress)

Schedule

- Determination of sample thickness (numerical simulation): Jan 2015-Mar 2015
- Design of test fixture: Mar 2015-May 2015
- New test fixture construction: May 2015-July 2015
- 1st aluminum tube test: Aug 19, 2015
- 2nd aluminum tube test: Sep 10, 2015
- 3rd aluminum tube test: Sep 10, 2015
- 4th aluminum tube test: Sep 23, 2015
- 5th aluminum tube test: Oct 7, 2015
- 5 more composite tube tests are scheduled in late 2015

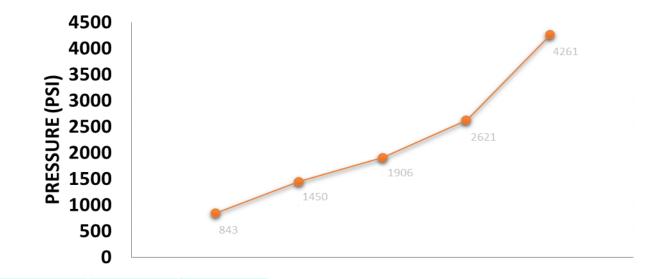

COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

Hypothesis

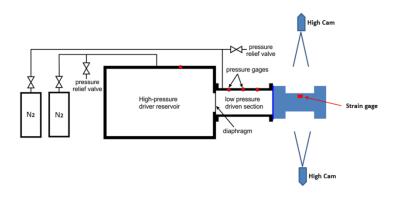

Expected damage/fracture patterns depending on the loading condition

	Equili (low stra		Non-equilibrium (high strain-rate)		
	Non-brittle Material (AI)	Brittle Material (Composite)	Non-brittle Material (AI)	Brittle Material (Composite)	
Plate test	Punching	Punching & Low fractures	Punching or High fractures	High fractures	
Structural Tank Test (Tube)	Less number (or single) of opening	Less number (or single) of opening and fractures	Increased number of opening and shrapnel	Many number of opening and shrapnel	

COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015



COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015



Test Matrix

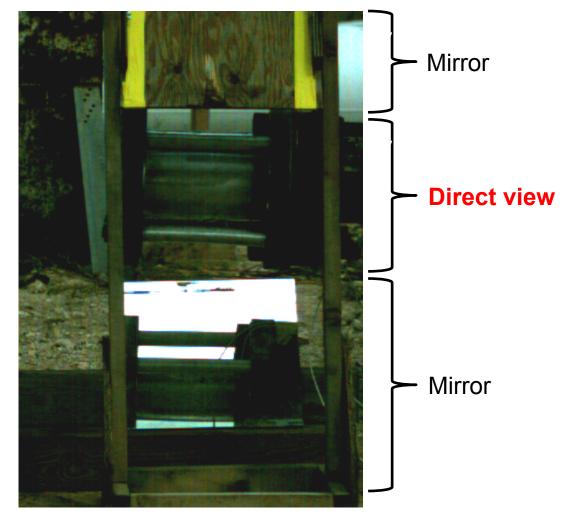
Burst Pressures (High Pressure)

Test #	High	Low	Differential	Diaphragm	Sample
1	2621	692	1929	2008	Al tube
2	1906	699	1207	1195	Al tube
3	843	843	0	N/A	Al tube
4	4261	720	3541	3515	Al tube
5	1450	306	1144	1195	Al tube

COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

Test Results (Shot #1)

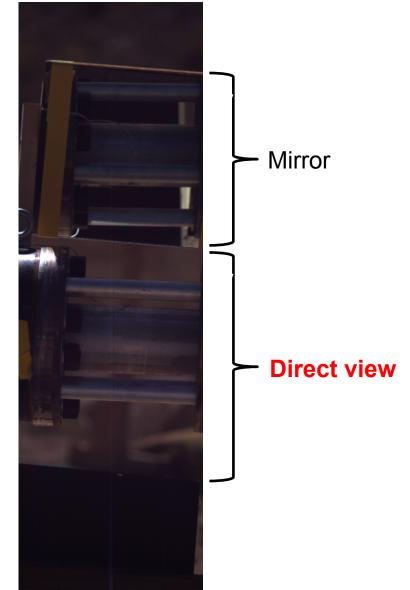
Two openings



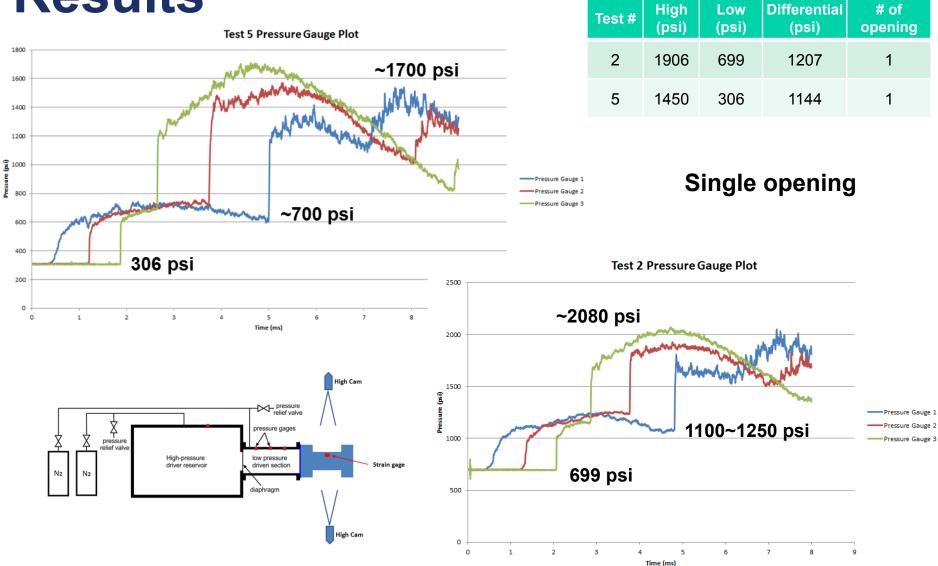
COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

Test Results (Shot #3: static test)

Single opening

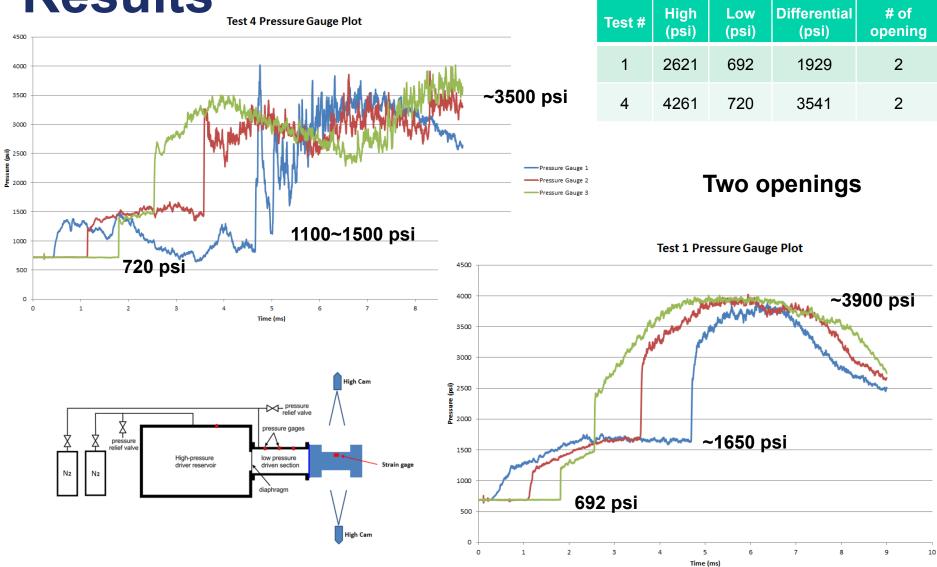


COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015


Test Results (Shot #4)

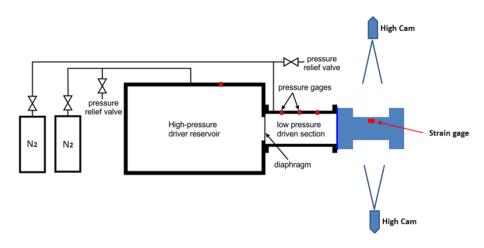
Two openings and many secondary fragments

COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015



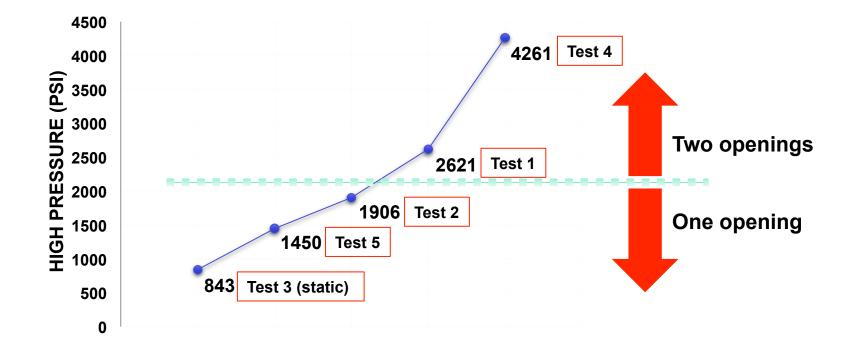
COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

2

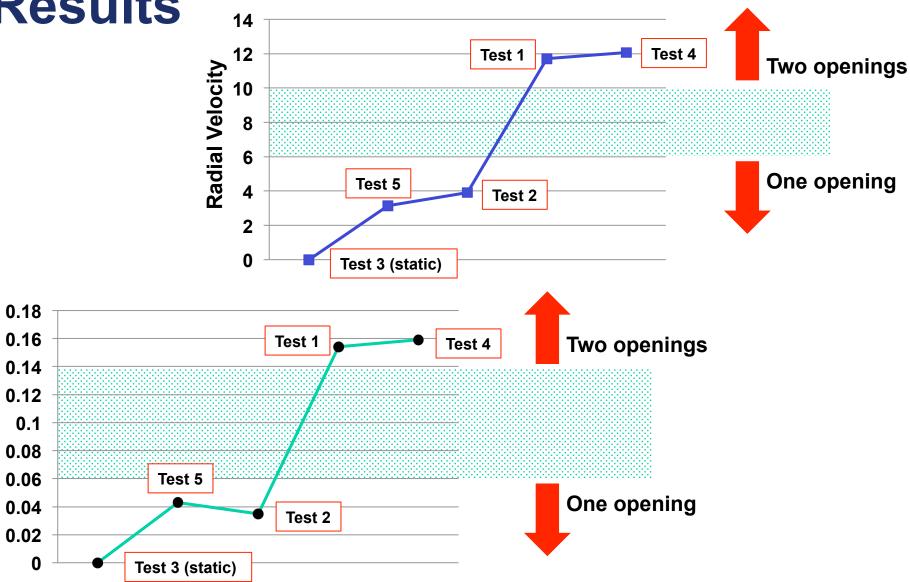


COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

Center of Excellence for


Test # (by date)	High (psi)	Low (psi)	Differential (psi)	Diaphragm (psi)	Radial vel. (m/s)	Circf. elong. vel. (m/s)	Radial strain rate (s ⁻¹)	# of opening	# of fragments
3	843	843	0	N/A	Too low	Too low	Too low	1	One large
5	1450	306	1144	1195	3.92	33.67	0.035	1	One large & small frags
2	1906	699	1207	1195	3.15	32.24	0.043	1	One large & small frags
1	2621	692	1929	2008	11.70	73.56	0.154	2	Approx. 20
4	4261	720	3541	3515	12.06	75.80	0.159	2	Many

COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015



COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

Radial Strain Rate (s⁻¹)

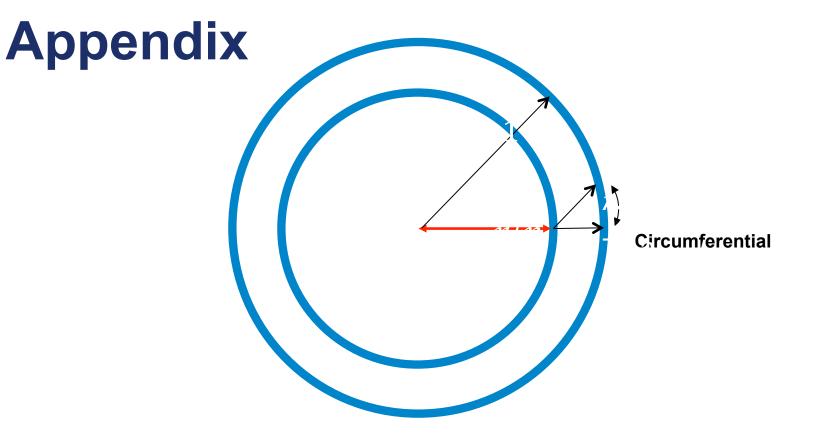
COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

Center of Excellence for

Conclusions

- Pressure tests on aluminum tubes show a clear tendency for the number of openings to be dependent on the input pressure
- The input pressure causes a similar trend in important deformation criteria: radial velocity, circumferential velocity, and strain rate
- The formation of small shrapnel in the aluminum is from secondary impact in the test structure
- The crack opening characteristic helps to predict the shrapnel kinetics (velocity, size, direction, etc.)

Future work


- Finalize quantification of the crack opening characteristics
- Investigation of the composite tube opening behavior
- Characterize the secondary impact and creation of small shrapnel (fragments)
- Understand the kinetics of the fragments

COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

Circumferential elongation velocity

Radial expansion velocity

COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

т	est	Cam frame	size	size	surface a	surface a	speed measurem spee	d measurerr avg speed	average spe				
	1	N B	3 0.0554	0.0449		2.31	44.15	47.06	56.14	61.49	63.1	54.3	
	1	N 6	1 0.162	0.1772	4.13	26.67	88.49	77.95	78.42	76.68		80.3	9 35.94
- 1	1	N 6	3 0.0654	0.1024	0.96	6.22	145.63	137.337	136.94			139.9	7 62.57
	1	S 2	4 0.2	0.1731	4.99	32.16	635	544.21				589.6	1 263.58
	2	N 8	3 0.3394	0.1267	6.19	39.95	568.75	524.93	512.01	520.14		531.4	6 237.58
	2	N 8	9 0.128	0.0527	0.97	6.27	359.92	401.64	395.96			385.8	4 172.49
	2	N 8	8 0.1312	0.2443	4.62	29.78	204.13	200.05				202.0	9 90.34
	2	N 9	8 0.3419	0.1517	7.47	48.19	159.32	160.27	159.86			159.8	2 71.44
	2	S 7	8 0.1079	0.1015	1.58	10.17	167.99	165.24	160.64			164.6	2 73.59
	2	S 7	1 0.0535	0.0433	0.33	2.15	93.02	96.8	107.88	115.29		103.2	5 46.16
	2	S 8	6 0.1741	0.0779	1.95	12.60	532.12	547.32	558.79			546.0	8 244.12
	2	S 7	2 0.1276	0.0605	1.11	7.17	132.91	136.45	140.89	141.96	144	139.2	
	2	S 7	4 0.043	0.0239	0.15	0.95	147.19	152.9	160.13	164.32	166.71	158.2	5 70.74
	2	S 7	5 0.1861	0.0545	1.46	9.42	382.42	323.4	308.51	323.56	310.56	329.6	
	2			0.0348		3.91	359.93	384.14	374.54			372.8	
	2		2 0.1157		2.23	14.40	105.29	106.14	106.68	101.9	101.87	104.5	
	2		2 0.1581		1.35	8.70	241.36	244.81	248.93	250.1984	255.05	248.0	
	2		2 0.1211		1.09	7.02	62.47	64.51	74.19	74.89	81.41	85.66 73.8	
	2			0.0508	0.64	4.15	393.74	366.79	370.32			376.9	
	2		3 0.0717		0.51	3.28	125.7	128.95	133.73			129.4	
	3		9 0.1155		0.76	4.87	375.51	110.05	101.21	92.25		169.7	
	3		0 0.1389		1.50	9.68	89.09	70.84	66.06			75.3	
	3		9 0.0651		0.56	3.63	117.35	90.79	82.14	79.87		92.5	
	3		5 0.2331		4.25	27.44	140.05	124.72	127.5	131.46	138.6	132.4	
	3		7 0.2125		4.02	25.94	225.76	242.12	250.72			239.5	
	3		1 0.2081		3.60	23.22	176.43	177.78	179.08	180.79	179.12	178.6	4 79.86
	3	S -2 S -8		0.2473	8.48	54.68						87.4	
	3	-	2 0.0853 5 0.2363		2.46 8.75	15.85 56.44	85.97	88.93				87.4	5 39.09
	3		2 0.0894		0.67	4.32	104.05	109.22	107.87			107.0	5 47.86
	4			0.0543	1.40	9.03	248.22	245.73	247.41			247.1	
	4		8 0.4499		20.38	131.45	163.38	163.38	157.6	160.44	162	161.3	
	4		3 0.1713		1.12	7.24	151.8	150.16	148.4	100.44	101	150.1	
	4			0.0785	1.11	7.18	341.27	288.83	140.4			315.0	
	4		2 0.1823		2.35	15.16	193.27	176.83	184.56	185.65		185.0	
	4		7 0.0516		0.41	2.65	319.99	315.84	320.19	319.34	318.92	318.8	
	4	N 19			7.28	46.99	141.8	121.23	119.84			127.6	
	4		8 0.1223		2.37	15.27	23.42	26.97	30.21	33.06	32.72	29.2	
	4		4 0.1315		1.39	8.97	63.57	58.78	60.33	59.61	58.22	60.1	
	4		9 0.0336		0.30	1.94	354.35	313.25				333.8	
	4		9 0.1306		3.04	19.58	408.04	406.99	415.96	405.69		409.4	
	4		8 0.064		0.59	3.81	190.43	216.15				203.2	
	4	S 8	0 0.3283	0.1835	8.67	55.97	126.69	142.67	139.9			136.4	2 60.99
	4	S 10	3 0.0904	0.0407	0.53	3.42	35.06	36.48				35.7	7 15.99
	4	S 10	6 0.1343	0.0593	1.15	7.40	28.1	56.08	68.04	73.24		56.3	7 25.20
	4	S 17	3 0.1678	0.1007	2.43	15.70	76.1	84.04	92.67			84.2	7 37.67
	5	N 6	9 0.1208	0.0614	1.07	6.89	244.82	254.64	258.9	258.68		254.2	6 113.66
	5	N 7	0 0.2768	0.0427	1.70	10.98	362.63	257.5	255	256.35	255.99	277.49	4 124.05
	5	Ν 6	6 0.0702	0.1073	1.08	7.00	432.29	419.75	433.09			428.3766	7 191.50
	5	S 11	9 0.4565	0.1787	11.75	75.79	67.05	58.23	66.14	66.16	72	65.91	6 29.47
	5		1 0.2791		4.10	26.45	126.12	166.2	181.11	190		165.857	
	5		5 0.1806		3.52	22.72	267.43	271.04	274.49	272.72		271.4	
	5		7 0.5183		7.84	50.61	175.98	174.9	177.91	182.17		177.7	
	5	S 13	5 0.1426	0.0514	1.05	6.81	100.14	97.94	99.53	97.68	98.37	100.5 99.02666	7 44.27

COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

