COE CST Fifth Annual Technical Meeting

TASK 241. High Temperature, Optical Sapphire Pressure Sensors for Hypersonic Vehicles

PI: William Oates PhD Students: <u>Justin Collins</u>, Harman Singh Bal, Peter Woerner

October 27-28, 2015 Arlington, VA

Overview

- Team Members
 - William Oates, Justin Collins, Harman Singh Bal, Peter Woerner (FSU)
 - Collaborators: Mark Sheplak & David Mills (UF)
- Motivation
- High temperature experiments
- Theory and modeling of laser machined sapphire
- Conclusions and future work
- Schedule

Team Members

- Team Members
- PI: William Oates, PhD student: Justin Collins (FSU)
- Collaborators: Prof. Mark Sheplak & Post doc: Dr. David Mills (UF)
- Acknowledgements
 - FAA COE-CST
 - Space Florida Matching Funds

Motivation and Overview

- Lack of sensor technology in >1000°C environments
 - Hypersonic vehicles
 - Gas turbines
- Pressure sensor technologies
 - Capacitive, piezoresistive, optical
 - Optical: no EMI, high temperature capability, simple fabrication; <u>packaging/</u> <u>manufacturing challenges</u>
- Sapphire optical sensing
 - Laser ablation and spark plasma sintering
 - Impact on structural integrity?

http://www.nasa.gov/centers/ames/research/2007/faq-shuttlereentry.html http://en.wikipedia.org/wiki/File:Turbofan_operation.png

COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

High-pressure hi

Nanomechanics of Sapphire

12um

COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

 \blacktriangle 4.0155×10⁻⁷

0.05

Nanoscale Laser Damage

- Laser machining (UF— Sheplak's group)
 - 10 picosecond pulsed laser
 - Varying fluence and frequency rates
- Transmission electron microscopy (TEM)
 - National High Magnetic Field Laboratory
 - Presence of laser induced dislocations

Strength Characterization

- Sensor reliability
 - Target: measure pressure up to 1000 psi @ 750-1600°C
- Thermomechanical flexural testing
 - 4-point bending
 - Laser machined sapphire (16×6×0.1mm³)
 - Milled center region—20 μm depth

Room Temperature

Tested at 950°C

Tested at 1300°C

COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

enter of Excellence for ommercial Space Transportation

Experimental Set-up

COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

enter of Excellence for ommercial Space Transportation

Experimental Results

COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

Center of Excellence for Commercial Space Transportation 10

Bayesian Uncertainty Analysis

Uncertainty of Elastic Modulus

Overview of Laser Ablation

- Multiphysics model developed
- Validated using Bayesian statistics in light of data from the University of Florida
- Model couples electromagnetics of light with electronic structure evolution

COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

Conclusions and Future Work

- Mechanical properties of laser machined sapphire quantified
 - Theory and experimental fracture analysis (prior research)
 - Laser and nanomechanical dislocation measurement and modeling (prior research)
 - Experimental high temperature strength characterization (current efforts)
 - Light-matter interactions and thermomechanical reliability predictions (current efforts)
- Next Steps
 - Dissemination of results
 - Rigorously understand laser machined surface properties
 - System integration and hot jet testing

TASK 241. High Temperature, Optical Sapphire Pressure Sensors for Hypersonic Vehicles

PROJECT AT-A-GLANCE

- UNIVERSITY: Florida State University
- PRINCIPAL INVESTIGATOR: William S. Oates
- STUDENT: Justin Collins

RELEVANCE TO COMMERCIAL SPACE INDUSTRY

• Development of high temperature sapphire based pressure transducers for structural health monitoring.

STATEMENT OF WORK

- Implement sapphire based pressure transducer that can operate in high temperature environments (~1000°C to 1200°C)
- Sapphire cannot be manufactured using conventional silicon based chemical etching
- Sapphire based transducer requires a strong understanding of mechanical property changes due to laser micromachining
 - Combined studies of single crystal dislocation mechanics and experimental testing focused on improved sensor reliability and manufacturing methods

High Temp. Strength Measurement Laser Ablation Material Physics

<u>STATUS</u>

- High temperature thermo-mechanical set-up designed and validated
- Modulus and strength of sapphire and alumina characterized from room temperature to 1300°C
- Material physics of laser ablation analyzed over broad range of laser fluence conductions
- Uncertainty in modulus and laser ablation quantified using advanced Bayesian statistics algorithms

FUTURE WORK

- Rigorous assessment of damage evolution during loading and unloading of laser machined sapphire specimens
- Pressure transducer characterization with Univ. of Florida

COE CST Fifth Annual Technical Meeting (ATM5)

