COE CST Fifth Annual Technical Meeting

Space Environment MMOD Modeling and Prediction

Sigrid Close and Alan Li Stanford University

Outline

- Team Members
- Task Description and Prior Research
- Goals
- Methodology
- Results

- Conclusions and Future Work

Team Members

- Sigrid Close, Stanford University (PI)
- Alan Li, Stanford University (graduate student)

- Lorenzo Limonta, Stanford University (graduate student supported by NSF)

Purpose of Task

- Spacecraft are routinely impacted by micrometeoroids and orbital debris (MMOD)
- Mechanical damage: "well-known", larger (> 120 microns), rare
- Electrical damage: "unknown", smaller/fast, more numerous

- Growing need to characterize MMOD down to smaller sizes and provide predictive threat assessment

MMOD - Classification

- Meteoroids
- Speeds
- 11 to $72.8 \mathrm{~km} / \mathrm{s}$ (interplanetary)
- $30-60 \mathrm{~km} / \mathrm{s}$ (average)
- Densities
- $\leq 1 \mathrm{~g} / \mathrm{cm}^{3}$ (icy) or $>1 \mathrm{~g} / \mathrm{cm}^{3}$ (rocky/stony)
- Sizes
- $<0.3 \mathrm{~m}$ (meteoroid)
- $<62 \mu \mathrm{~m}$ (dust)
- Space Debris
- Speeds in LEO
- < $12 \mathrm{~km} / \mathrm{s}$
- $7-10 \mathrm{~km} / \mathrm{s}$ (average)
- Densities
- $>2 \mathrm{~g} / \mathrm{cm}^{3}$
- Sizes
- < 10 cm (small)

MMOD - Previous Research

Run 00005: $\mathrm{v}=5.62 \mathrm{~km} / \mathrm{s} ; \mathrm{m}=5.9 \mathrm{mg}$; TgtBias $=50.0 \mathrm{~V}$

Well 4, Bias $=60.9 \mathrm{~V}$

COE CST Fifth Annual Technical Meeting (ATM5) October 27-28, 2015

Center of Excellence for

MMOD - Previous Research

- EISCAT Svalbard radar

$-78.1^{\circ} \mathrm{N}, 16.0^{\circ} \mathrm{E}$
- $500 \mathrm{MHz}, 32 \mathrm{~m}$ dish, 0.8 MW peak power
- Data collected March 2007 - March 2009 (following Chinese ASAT test in January 2007)

MMOD and Neutral Densities

- "Space junk" WT1190F
- Approximately 1-2 m long
- Most likely discarded rocket body "lost" by SSN
- Reentry on November 13 (point of impact over Indian Ocean?)
- Can we improve the 15-50\% error?

Goal: Neutral Density Estimation

source: http://www.huffingtonpost.com/2014/04/21/lyrid-meteor-

- Leverage the increasing number of constellations of satellites in orbit
- Leverage the abundance of meteoroids ablating in the atmosphere
- Good temporally and spatially varying profile of neutral density
- Different source of density estimation

Methodology

300-500 km

Satellites: Orientation

50-200 km

Meteoroids: Size and Composition

- Want to measure density from readily availabis equivalent platforms
- Each of these platforms is slightly different
- Measurements made at a certain time contains certain biases (across all platforms)

Data

Remove Bias

Estimate Variation

Calculate Density

Assumptions and Equations

- Assumptions

- C_{D} constant (spherical shape)
- Variation arises from mass/size/bulk density
- Multiple layers of atmosphere traversed
- Ablation and mass loss
- Governing equations

Drag: $\quad \frac{\mathrm{dv}}{\mathrm{dt}}=-\frac{3}{8} \frac{\rho_{\mathrm{a}}}{\rho_{\mathrm{m}}} \frac{\mathrm{C}_{\mathrm{D}}}{\mathrm{r}}|\mathrm{v}|^{2}$
Ablation: $\frac{\mathrm{dr}}{\mathrm{dt}}=-\frac{1}{8} \frac{\mathrm{C}_{\mathrm{H}}}{\mathrm{H}^{*}} \frac{\rho_{\mathrm{a}}}{\rho_{\mathrm{m}}}|\mathrm{v}|^{3}$

Velocity:	v	Enthalpy of Destruction:	H^{*}
Radius:	r	Coefficient of	
Atmospheric Density:	ρ_{a}	Heat Exchange: C_{H}	
Meteoroid Density:	ρ_{m}		

Density Ratios

- Combine drag and ablation equations and compare ratios of radii at different points in time

$$
\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\exp \left(\frac{1}{6} \frac{\mathrm{C}_{\mathrm{H}}}{\mathrm{C}_{\mathrm{D}}} \frac{1}{\mathrm{H}^{*}}\left(\mathrm{v}_{1}^{2}-\mathrm{v}_{2}^{2}\right)\right)
$$

- For $\mathbf{i}^{\text {th }}$ meteoroids at $\mathbf{j}^{\text {th }}$ altitude

$$
\underbrace{\ln \left(\frac{d v_{i, j+1}}{d t} \frac{1}{v_{i, j+1}^{2}}\right)-\ln \left(\frac{d v_{i, j}}{d t} \frac{1}{v_{i, j}^{2}}\right)}_{\text {LHS }_{i}}=\underbrace{\frac{1}{6} D_{i}\left(v_{i, j}^{2}-v_{i, j+1}^{2}\right)+\ln \left(\rho_{r j}\right)}_{\text {RHS }_{i}}
$$

- Given data on velocity and deceleration, estimate D_{i} and ρ_{rj} for each meteoroid and altitude Minimize:

$$
\min \left(\sum_{\mathrm{i}, \mathrm{j}}\left(\mathrm{LHS}_{\mathrm{ij}}-\mathrm{RHS}_{\mathrm{ij}}\right)^{2}\right)
$$

$$
\begin{aligned}
& D_{i}=\frac{C_{H i}}{C_{D i}} \frac{1}{H_{i}^{*}} \\
& \rho_{\mathrm{rj}}=\frac{\rho_{\mathrm{a}, \mathrm{j}+1}}{\rho_{\mathrm{a}, \mathrm{j}}}
\end{aligned}
$$

Subject to: $\mathrm{D}_{\mathrm{i}}>0$

Ratio Distribution

- Translate point of entry measurement to a reference point in altitude

$$
\frac{\mathrm{dv}}{\mathrm{dt}} \frac{1}{\mathrm{v}^{2}} \sim \frac{\rho_{\mathrm{a}, \mathrm{e}}}{\mathrm{r}_{\mathrm{e}} \rho_{\mathrm{m}}} \longrightarrow \frac{\mathrm{dv}}{\mathrm{dt}} \frac{1}{\mathrm{v}^{2}} \frac{\rho_{\mathrm{a}, \mathrm{ref}}}{\rho_{\mathrm{a}, \mathrm{e}}} \sim \frac{\rho_{\mathrm{a}, \mathrm{ref}}}{\mathrm{r}_{\mathrm{e}} \rho_{\mathrm{m}}}=\mathrm{K}
$$

- Calculate K for each meteoroid and define minimum ratio using order statistics

- Calculate distribution

Results

- ALTAIR radar

$-9^{\circ} \mathrm{N}, 167^{\circ} \mathrm{E}$

- 160 and $422 \mathrm{MHz}, 46 \mathrm{~m}$ dish, 6 MW peak power
- Data collected November $8{ }^{\text {th }} 2007$ (6 AM local time)

> COE CST Fifth Annual Technical Meeting (ATM5)

October 27-28, 2015

Conclusions and Future Work

- New method for estimating neutral density from multiple measurements across equivalent platforms
- Errors < 10\% using CubeSats (not shown), 12\% for meteoroids
- Additional data to modeling community
- Next steps
- Satellites: precision orbit determination
- Meteoroids: ablation physics
- Space debris: highly variable C_{D}

Li, A., and Mason, J. Optimal Utility of Satellite Constellation Separation with Differential Drag. 2014 AIAA/AAS Astrodynamics Specialist Conference. AIAA 2014-4112.

Li, A., and Close, S. Mean Thermospheric Density Estimation derived from Satellite Constellations. Advances in Space Research 56 (2015),pp. 1645-1657. DOI: 10.1016/j.asr. 2015.07.022

Thank you!

COE CST Fifth Annual Technical Meeting (ATM5)

 October 27-28, 2015
Ballistic Factors

- θ : Rotation about the satellite spin axis (IID)
- Ballistic factor:

$$
B(\theta)=\frac{C_{D}(\theta) A(\theta)}{m}
$$

) B is IID with some unknown distribution
, $\mathrm{B}_{\text {min }}$ defined when $\theta=0$ (absolute minimum)

- Ignore rotations about other axes

$$
\mathrm{B}_{\min }=\frac{\mathrm{C}_{\mathrm{D}, \min } \mathrm{~A}_{\min }}{\mathrm{m}}
$$

IID = Independent and Identically Distributed

Orbital Elements

ORIENTATION:

- Kept up to date by NORAD (Space-track)
- Uses Simplified General Perturbations (SGP) model
- Within few km of error over 1 day

Data

From TLEs

$$
\left.\frac{\mathrm{da}}{\mathrm{dt}}\right|_{D}=\frac{2 \mathrm{a}^{2} \mathrm{v}}{\mu} \frac{d \vec{v}_{D}}{d t} \cdot \hat{e}_{v}=\frac{2 \mathrm{a}^{2} \mathrm{Bv}^{3} \mathrm{~F}}{\mu}
$$

small
-

$$
\Delta \mathrm{a}_{\mathrm{SGP} 4}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{k}}\right)=\left.\int_{\mathrm{t}_{\mathrm{i}}}^{\mathrm{t}_{\mathrm{k}}} \frac{\mathrm{da}}{\mathrm{dt}}\right|_{\mathrm{D}}+\left.\frac{\mathrm{da}}{\mathrm{dt}}\right|_{\mathrm{G}}+\left.\frac{\mathrm{da}}{\mathrm{dt}}\right|_{\mathrm{U}} \mathrm{dt}
$$

From ranging data

$X=\left[\begin{array}{c} \mathbf{r} \\ \mathrm{v} \end{array}\right], X_{0}=\left[\begin{array}{l} \mathrm{r}_{0} \\ \mathbf{v}_{0} \\ \mathrm{~K} \end{array}\right] \quad\left[\begin{array}{l} \\ \mathrm{K}_{0} \end{array}\right]$		

$$
\dot{\mathbf{X}}=\mathrm{F}_{\mathrm{D}}(\mathbf{X})+\mathrm{F}_{\mathrm{g}}(\mathbf{X})+\mathrm{F}_{\mathrm{U}}(\mathbf{X})
$$

$$
\tilde{\mathbf{b}}=\mathrm{R}\left(\dot{\mathrm{X}}\left(\mathrm{t}_{\mathrm{i}} ; \mathrm{X}_{0}\right)\right)-\mathrm{R}_{\text {meas }}\left(\mathrm{t}_{\mathrm{i}}\right)
$$

$$
\text { Loop until } R M \delta x=\left(A^{T} W A A\right):{ }^{-1} A^{T} W \tilde{b}
$$

$$
\rightarrow \mathrm{X}_{0}=\mathrm{X}_{0}+\delta \mathrm{x}
$$

$$
\text { RMS }=\sqrt{\frac{\tilde{b}^{T} W \tilde{b}}{n_{\text {obs }}}}
$$

How to Remove Bias

- Density estimated as:

$$
\bar{\rho} \cong \frac{2 \mu^{\frac{2}{3}} \Delta \bar{n}_{M}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{k}}\right)}{3 \overline{\mathrm{~B}} \oint_{\mathrm{t}_{1}}^{\mathrm{t}_{\mathrm{k}}} \overline{\mathrm{n}}^{\frac{1}{3}} v^{3} \mathrm{Fdt}}=\frac{\mathrm{K}}{\overline{\mathrm{~B}}} \quad \text { or } \quad \bar{\rho} \overline{\mathrm{B}}=\mathrm{K}
$$

- K can be calculated by:
, SGP4 in the case of TLEs

Ballistic factor:	$\mathrm{B}=\frac{\mathrm{C}_{\mathrm{D}} \mathrm{A}}{\mathrm{m}}$
Mean motion:	n
Wind Factor:	F
Density:	ρ

, Ranging or GPS measurements; propagator needs to account for higher order gravity terms, SRP, etc...

- Internal bias within K because K is composed from varying densities

The Dilemma: If we have \mathbf{N} satellites, we have K_{N} measurements but need to estimate $n+1$ values (ρ and B_{N}), where B_{N} is randomly distributed

Order Statistics

- What is order statistics?
, Let $X_{1}, X_{2} \ldots, X_{N}$ be IID with some CDF $C(x)$
, Then the $r^{\text {th }}$ order statistic can be expressed as:

$$
C_{(r)}(x)=\sum_{i=r}^{N}\binom{N}{i} C^{i}(x)[1-C(x)]^{N-i}
$$

, And the minimum as:

$$
C_{(1)}(x)=1-[1-C(x)]^{N}
$$

- Why do we use it?

, We know something about the minimum of C_{D} from physics
, We have many satellites
, Estimation of C_{D} is difficult due to coupling with ρ

Remove Bias

Randomly distributed K

- Define the minimum of our observations:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{mk}}\left(\mathrm{t}_{\mathrm{k}}\right)=\min _{j} \mathrm{~K}_{\mathrm{j}}\left(\mathrm{t}_{\mathrm{k}}\right) \\
& \frac{\mathrm{K}_{\mathrm{j}}\left(\mathrm{t}_{\mathrm{k}}\right)}{\mathrm{K}_{\mathrm{mk}}\left(\mathrm{t}_{\mathrm{k}}\right)} \approx \frac{\mathrm{B}_{\mathrm{j}}\left(\mathrm{t}_{\mathrm{k}}\right)}{\mathrm{B}_{\mathrm{mk}}\left(\mathrm{t}_{\mathrm{k}}\right)}
\end{aligned}
$$

- Amalgamate measurements across all time periods to construct CDF ratio:
- Results in ratio distribution

$$
C D F\left(\frac{B}{B_{m k}} \left\lvert\, \frac{B}{B_{m k}}>1\right.\right)
$$

Ratio Distribution

- Probability of ratios defined as:

$$
\begin{gathered}
\mathrm{P}(\mathrm{z})=\int_{-\infty}^{+\infty}|y| \mathrm{P}_{\mathrm{B}, \mathrm{y}}(\mathrm{zy}, \mathrm{y}) \mathrm{dy} \\
\downarrow \text { Math } \\
\mathrm{C}(\mathrm{z})=\frac{\mathrm{N}}{\mathrm{~N}-1} \int_{\mathrm{B}_{\min }}^{\mathrm{B}_{\max }} \mathrm{F}_{\mathrm{B}}(\mathrm{z} \cdot \mathrm{y}) \cdot \frac{\mathrm{d}\left(\mathrm{~F}_{\mathrm{B}}^{\mathrm{N}-1}(\mathrm{y})\right)}{\mathrm{dy}} \mathrm{dy}+1 \\
\mathrm{C}\left(\mathrm{z}_{\mathrm{i}}\right)-1=\frac{\mathrm{N}}{\mathrm{~N}-1} \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{~F}_{\mathrm{B}}\left(\mathrm{z}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)\left(\mathrm{F}_{\mathrm{B}}^{\mathrm{N}-1}\left(\mathrm{y}_{\mathrm{i}+1}\right)-\mathrm{F}_{\mathrm{B}}^{\mathrm{N}-1}\left(\mathrm{y}_{\mathrm{i}}\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{y}=\mathrm{B}_{\mathrm{mk}} \\
& \mathrm{z}=\frac{\mathrm{B}}{\mathrm{~B}_{\mathrm{mk}}}
\end{aligned}
$$

$\mathrm{N}=$ \# of platforms
$\mathrm{C}_{\mathrm{B}}=\mathrm{CDF}(\mathrm{B})$

$$
\mathrm{F}_{\mathrm{B}}(\mathrm{~B})=1-\mathrm{C}_{\mathrm{B}}(\mathrm{~B})
$$

- Limits:

$$
\lim _{B \rightarrow B_{\min }} F_{B}(B) \rightarrow 1 \quad \lim _{B \rightarrow \mathrm{~m}_{\max }} \mathrm{F}_{\mathrm{B}}(\mathrm{~B}) \rightarrow 0
$$

- Matrix form:

$$
\frac{\mathrm{N}-1}{\mathrm{~N}}\left(\left[\begin{array}{c}
\mathrm{C}\left(\mathrm{z}_{\mathrm{m}}\right) \\
\mathrm{C}\left(\mathrm{z}_{\mathrm{m}}\right) \\
\vdots \\
\mathrm{C}\left(\mathrm{z}_{2}\right)
\end{array}\right]-1\right)=\left[\begin{array}{cccc}
\mathrm{F}_{\mathrm{B}, \mathrm{~m}} & 0 & \ldots & 0 \\
\mathrm{~F}_{\mathrm{B}, \mathrm{~m}-1} & \mathrm{~F}_{\mathrm{B}, \mathrm{~m}} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\mathrm{~F}_{\mathrm{B}, 2} & \mathrm{~F}_{\mathrm{B}, 3} & \ldots & \mathrm{~F}_{\mathrm{B}, \mathrm{~m}}
\end{array}\right]\left[\begin{array}{c}
\mathrm{F}_{\mathrm{B}, 2}^{\mathrm{N}-1}-\mathrm{F}_{\mathrm{B}, 1}^{\mathrm{N}-1} \\
\mathrm{~F}_{\mathrm{B}, 3}^{\mathrm{N}-1}-\mathrm{F}_{\mathrm{B}, 2}^{\mathrm{N}-1} \\
\vdots \\
\mathrm{~F}_{\mathrm{B}, \mathrm{~m}}^{\mathrm{N}-1}-\mathrm{F}_{\mathrm{B}, \mathrm{~m}-1}^{\mathrm{N}-1}
\end{array}\right]
$$

- Minipluikeject to:

$$
\begin{aligned}
& \min \left(\sum(\mathrm{LHS}-\mathrm{RHS})^{2}+\kappa \cdot \max \left(\frac{\mathrm{dC}_{\mathrm{B}}}{\mathrm{dz}}\right)\right) \\
& 0=\mathrm{F}_{\mathrm{B}, 1}>\mathrm{F}_{\mathrm{B}, 2}>\cdots>\mathrm{F}_{\mathrm{B}, \mathrm{~m}}=1
\end{aligned}
$$

Effects of Error

- Any estimation scheme is prone to error
- These errors affect the minimum ratio and hence its CDF

$$
\operatorname{CDF}\left(\frac{(B+d B)}{(B+d B)_{m k}} \left\lvert\, \frac{(B+d B)}{(B+d B)_{m k}}>1\right.\right)
$$

- Estimate $(B+d B)$ using similar method
- Require statistics on the error of $d B$
, Estimate from previous filtering methods (non-linear least squares to estimate K)
$\cdot \mathrm{dB} \sim \mathcal{N}\left(0, \frac{\sigma_{\mathrm{K}}}{\bar{\rho}}\right)$

$$
\mathrm{C}_{\mathrm{B}+\mathrm{dB}}(\mathrm{x})=\left[\mathrm{C}_{\mathrm{B}} * \mathrm{P}_{\mathrm{dB}}\right](\mathrm{x})
$$

K Ratio CDF with error

Solving for F

- Test Case: Gamma Distribution
-

Problem: If the distribution shifted left or right and is scaled appropriately, get same observed result (unknown integration constant)!

How to determine the minimum, $\mathrm{B}_{\text {min }}$?

Free Molecular Flow

Mean free path: λ
Characteristic length:
Number density:
Collision Area:

- Knudsen number: $\mathrm{Kn}=\frac{\lambda}{\mathrm{L}} \quad \lambda \sim \frac{1}{\mathrm{~N} \sigma_{\mathrm{A}}}$
- High Knudsen numbers: Free molecular flow (Kn >> 10)
, Basically collisionless, not a continuum (no bulk properties)
, Random thermal motions dominant: Maxwellian distribution

$$
\mathrm{B}_{\min }=\frac{\mathrm{C}_{\mathrm{D}, \min } \mathrm{~A}_{\min }}{\mathrm{m}}
$$

Free Molecular Flow

- Accommodation coefficient:

$$
\alpha=\frac{E_{i}-E_{r}}{E_{i}-E_{w}}
$$

Diffusely Reflected Flux

- Reflected particles classified as:
, Specular - perfect reflection about surface normal
, Diffuse - random
- Surfaces for satellites in LEO tend to become coated with adsorbed atomic oxygen; most reflections are diffuse (80-99\%)

C_{D} on Flat Plate

$C_{D}=\frac{A}{A_{\text {ref }}}\left[\left(2-\sigma_{N}\right) \cos \theta\left(\cos \theta(1+\operatorname{erf}(\gamma))+\frac{1}{S \sqrt{\pi}} e^{-\gamma^{2}}\right)\right.$

$$
\left.+\frac{2-\sigma_{N}}{2 S^{2}}(1+\operatorname{erf}(\gamma))+\frac{\sigma_{N}}{2} \sqrt{\frac{T_{r}}{T_{i}}}\left(\frac{\sqrt{\pi}}{S}(1+\operatorname{erf}(S))+\frac{1}{S^{2}} e^{-S^{2}}\right)\right]
$$

$\gamma=S \cos \theta$

$$
\begin{gathered}
T_{r}=T_{i}(1-\alpha)+\alpha T_{w} \\
S=\frac{U}{V_{a}}=\frac{U}{\sqrt{2 R_{s p} T_{a}}}
\end{gathered}
$$

Uncertainty in α

- Combine this with earlier results:

$P(B, \alpha)=P\left(B \mid B_{\min }\right) P\left(B_{\min } \mid \alpha\right) P(\alpha)$
- $\mathrm{B}_{\text {min }}$ is a function of α :

$C\left(B_{m k}\right)=\int_{B_{\min , \alpha=1}}^{B_{\max }} C\left(B_{m k} \mid B_{\min }\right) P\left(B_{\min }\right) d B_{\min }$
$\lim _{\mathrm{N} \rightarrow \infty} \mathrm{P}\left(\mathrm{B}_{\mathrm{mk}}\right) \rightarrow \mathrm{P}_{\min }$
Effect of uncertain α

$$
\begin{aligned}
& C_{D} \sim \text { Half Normal } \\
& 0.1 \text {) }
\end{aligned}
$$

Calculating Density

- Calculate density ρ :

Recursion

Mean Estimate: $\quad \rho_{k}=\frac{\bar{K}_{k}}{\bar{B}}$

- Minimum
- Maximum

- K contains estimation error
- B contains error associated with platform

Have to choose which one to minimize!

- Nullify large estimation errors in K from affecting estimation of B

Separate estimation error from the random elements of the platform in question

