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Absorption Spectroscopy and Beer’s
Law

Beer Lambert law of absorption 4 = spectral absorbance
I, = transmitted radiation at A

A/‘L — — In (I—’l) — k/lLX I o = incident radiation at A
I2,0 k, = spectral absorption coef.
L = path length
x = mole fraction of target gas
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Presentation Notes
Time: <1min
Agg Time: 6.5min



How Does Absorption :
Spectroscopy Work?
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“*LED sensor design
and lab validation



Sensor Design Using LEDs

e Three MIR LEDs centered at « Band pass filters
o 3.6um (for reference) « Collimating lenses
e« 4.2um (CO,)  Pellicle beam splitters
e 4.7um (CO) « Thermo-electrically cooled photovoltaic detector

e LEDs amplitude modulated at
different frequencies

LED 4.2
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Time: 1.5min
Agg Time: 8min


@ Broad spectrum of LEDs and L

s ¢
& v
w =
w Q0
A <
1

=absorption features of targeted gases

.. LED Filter profile

output\:_,._f" / |

- profile /

......

a
=
|
=)
==

L)
=
I

|
=)
o

®
RS,

Absorption Coefficient {(cm 1)

[
=
I

Filter Transmissivity =

LED Normalized Emission s=«»

O .-.,..-.-,.._n_-.._-..,
O ...,.“,........-..

*
i
H

‘ o2

| I Stk l . -
3 32 34 36 338 4 42 44 46 43 5
Wavelength (um)

(]
=
I

—
=]
I

4
]
K

-

=]



Presenter
Presentation Notes
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Agg Time: 10min
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Sensor Overview and Operation
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Presentation Notes
The sensor we have developed uses absorption spectroscopy to make time-resolved measurements of CO/CO2. The overall system will be broken into three major components: The pitch, the catch, and the probe. The overall system will be connected, monitored, analyzed and powered through a DAQ device.
 
The pitch houses our lights source. LEDs centered at three unique spectral emission will be collimated, filtered, combined, and focused into a light guide. While lasers are more traditionally used in absorption sensors they're cost is prohibitive for practical implementation. LEDs on the other hand allow for a more affordable and rugged design.
 
The light is guided from the pitch to a probe where the gases are non-intrusively sampled then guided to the catch.
 
The catch houses the singe detector that meets our full absorption range and focusing lenses to focus the oncoming light from the optical cable into the detector.
 
In implementation, each LED will be driven with a continues wave signal at different frequencies. Once the light is transmitted and detected, each wavelength will be separated using a fast Fourier transform giving us three magnitudes, one for the 3.6, 4.3, and the 4.7micron wavelengths. This information will be interpreted using the Beer-Lambert law to give us the fraction CO and CO2.



Pitch

=E

Filters Lens(es)

4. Tum

HWG

ML

Function
Generator

h

4.3um

ML

Function
Generator

| ggo

h d

Beam
Splitters

Function
Generator

il B

Combine LEDs

11



Presenter
Presentation Notes
Here you see the layout of the pitch setup. There are four LEDs total, one centered at 3.6um, one at 4.26um, and two centered at 4.67um. The 4.7um needed for CO proved most challenging for us since it provided the smallest amount of power, being 83 to 96% less powerful than the others. Our immediate solution was to add a 2nd 4.7um LED to the system which gave us more power, but required more components. Each of the LEDs with a unique wavelength will be driven by a function generator. The light is passed through a band pass filter, collimated, combined using Pellicle beam splitters, then focused into a hollow waveguide.
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Imulations using Zemax (Optic Studio)
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Presentation Notes
In order to obtain the best performance of the sensor we took advantage of the Radiant Zemax optical-design simulation software. With this we were able to simulate the lens design of our entire setup. This software is capable of modeling the effects of optical elements such as simple lenses, aspheric lenses, gradient index lenses, mirrors, and diffractive optical elements, and can produce standard analysis diagrams such as spot diagrams and ray-fan plots. It can also perform standard sequential ray tracing through optical elements, non-sequential ray tracing for analysis of stray light, and physical optics beam propagation and has built in optimization capabilities.
 
 As I mentioned previously, we have four LEDs we must combine into a single beam. Each LED must be collimated, combined with the other lights, then launched into the optical cabling; while each LED has different collimated beam path lengths depending on how many beam splitters it must pass through. This has been a vital part of our designing processes given the inherent difficulties in focusing to a point an incoherent source such as LEDs; a significant amount of power can be loss when attempting to focus the light into the HWG.
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Presentation Notes
The simulations I am going to discuss will showcase our most significant findings. Here we see a one collimating lens, one launch lens setup vs. a two collimating lens/two launch lens setup. You can clearly see that with design 2 a much more collimated beam was achieved, which resulted in less power loss as the light is transmitted through the beam splitters and combined with the other LEDs. The squares here shows the incident radiation on the entrance of the HWG. Each square is 6mm by 6mm and display the power density of the incident radiation. Notice that with design 2 we were able to focus the beam to a smaller, more power dense point. With a 1mm inner bore diameter of the HWG most of our signal is being lost at the entrance of the light guides, so the smaller point is desired. Going from design 1 to design two we were able to increase our efficiency at the HWG entrance from 84% to 98%.
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Presentation Notes
Here we see simulations showing the effects of the launch lens focal length. In these simulations all lenses, and distances were the same except for the last launch lens. These simulations use design two from the previous slide. With the top lens we have a focal length of 15mm and the bottom lens having a very small 5.95mm focal length. The square we see here are of a detector face approximately 5mm from the exit of the HWG, so we are seeing the light after it has been transmitted through the light guide. You can clearly see that one side effect of the smaller focal length is an increase numerical aperture which gives us the large spot diagram. However, we also have much less loss achieving an efficiency of 56% with the short focal length vs an efficiency of 40% with the longer focal length at the HWG exit. Here it is less clear which approach would be better so we plan to test both these designs. I would also like to point out that, as you recall, we had a 98% efficiency at the light guide entrance so we are losing half our signal there, at the entrance.
 
Overall we were able to increase the efficiency from our original design, before any simulations, at 28% at the exit of the hwg to 40 to 56% efficiency.



LED temperature control
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Presentation Notes
From these three diagrams we see a known interesting feature occurring in the temperature sensitivity of light sources. As the temperature of the lights source (or any matter) changes, the spectral emission and spectral bandwidth also changes. Taking advantage of the temperature feature allows us to “dial” in on different peaks and ranges for each of the LEDs. As a disadvantage we have to control temperature in order to maintain the spectral emission range needed for detecting CO, CO2, and Ref. The diagram shows the normalized intensity and peaks for each wavelength as a function of temperature and so each LED has its own optimal temperature that needs to maintained to “dial” into our needed peak spectral frequency emission of 3.6, 4.26, and 4.67um. This feature influenced us to buy the LEDs w/ TEC cooling and respective heat sinks.
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Presentation Notes
An inherit drawback of using LEDs is their broad spectral bandwidth. Typically, with the use of monochromatic sources such as laser, one spectral line will be targeted. However, our LEDs span multiple bands and even overlap with bands of other gases which can cause noise in our measurements. To reduce this bandwidth we utilize band pass filters. Here you can see our filter profile, in blue, selected for the reference signal centered on 3.6um and the emission profile of its corresponding LED in red, overlaid on the spectral absorption bands we are targeting. Note that the lines for H2O are multiplied by 50 for clarity. The LED will be temperature controlled so that its center wavelength will overlap with the center wavelength of the filter. This is the profile, again in blue, for the filter that will be used for our CO2 signal and the profile of the corresponding LED, which is centered at 4.26um. Notice that there is some overlap for the spectral lines of CO however they are very minimal, with the transmissivity of the filter being below 2.5% there. Finally, we have the profile of the CO filter centered at 4.67um. Again, we have some overlap with the adjacent gas absorption lines but the transmissivity is below 2.5% in this area. This is our area of most concern since our absorption lines are the smallest here and we will have the most interference from water in this range.  And here is a final look at all three of the selected filters.
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Presentation Notes
The catch optics design is a simple design incorporating a detector and two focusing lenses, focusing what’s left of the absorbed light into the detector. The catch design includes thermoelectric cooling to maintain the operating temperature of the detector as well as an insulated and coated housing to prevent any infra-red or heat interference. The overall catch design wasn’t too complicated as it is heavily based on the selection of our detector and how the overall pitch and probe optics work. The detector was selected for sensitivity to capture the low power output of the LEDs in the spectral range we are using.



Light Guiding

Hollow Silica Waveguide from Molex
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Presentation Notes
Lastly was the selection of the light guide. The requirements for selection of the light guide was the transmission in our wavelength and a large inner bore diameter. As I have shown a large portion of our losses occur at the entrance of the waveguide.  For our wavelength range, the hollow silica waveguides (HWEA) from Molex have attenuation between 0.75 and 1.00 decibels per meter. The IR chalcogenide, selenide glass fiber from CorActive has attenuation of 0.4 decibels per meter for our wavelengths. However, we went with the HSWG since it had the largest diameter.
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Presentation Notes
Here you see how all the components come together.  During operation the assembly is contained in a tent that is purged with nitrogen so to reduce noise from atmospheric gases.



From Pitch
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Presentation Notes
We have constructed a simple flow cell, as seen here, for assessment and verification of the sensor’s functionality. The cell was designed so that it can function as a static and a flow cell so that we may test the sensors detectability limit and its responsiveness to fluctuations in CO and CO2. This will also allow us to validate and calibrate our spectroscopy strategy. The cell will be loaded with a variation of gases comprising CO, CO2, and a diluting species such as N2. We may also put a small concentration of fuel to observe if this causes any interference. The green box you see there is a solenoid valve to allow us to fluctuate the CO and CO2 gases. Later we will be using a high temperature absorption cell that is currently being design to test our sensor more in the temperature ranges of exhaust gas.



ebetection limit and time resolution=
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» Early evaluation testing done at ORNL
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e Time resolution testing
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Time: 1min
Agg Time: 11min

-Briefly discuss time resolution
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Presentation Notes
Time: 1.5min
Agg Time: 13.5min

Note
Nonlinear because not just one line but rather broad profile
Still follows trends
L increasing will lower detection limit
Absorbance increases with increasing concentration
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Time: <1min
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Need for Gas Sensors on
Spacecraft

‘sSpacecraft cabin air Is
confined aboard spacecraft
and toxic gases may,_.
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Spectral Considerations of
s Tabletop Sensor
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Flight Test Sensor Electrical -
System

__ e LED/TEC Su bsystems
-/ 24V NI-cRIO DAQ = T :
—I"]| bc f
{ = LED/TEC
—I"_o_r/Z- Sub
Ty — =TI ubsystems
DC DC

Component TDP, W
Photodiode 5.5W
LED 1.215W
TEC for LED 8.34W
Driving Elec. 24W
cRIO-9031 10W
Total 49.055W
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Photodiode




Pre Flight Testing at the UCF =
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High Altitude Balloon Flight L
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| earned Lessons from
Beamspliter Balloon Flight
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“ Low SNR

 45% Intensity loss at each
beamsplitter

s Test cell is too small
< Band pass filters limit
versatility

s Poor overlap of CO feature
with 4.7 ym filter

+» Gases outside of bands
are nondetectable

< High signal variance from
calibration

% LED temperature
regulation was sub par

< Nested ground loops
caused increased noise

s Sensor is too big
< High TDP
s Large volume
 Heavy
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High Altitude >

Balloon Flight Test

Launch at Ft. Sumner 9/4/17 =
— 138 min ascent to Alt,,, §
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— Alt,,,, 110,000’ 3
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enclosure with sensor

— Fixed CO, concentration

Flight testing examines signal drift
and noise floor under real conditions
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* LED based gas
sensor is to be used
for the detection of
toxic compounds in
spacecraft air

» Both amplitude and
frequency modulation
are simultaneously
used in the sensor

» Next iteration will use
multiple LEDs and
variable path optical
system to enhance
species selectivity
and LDL

«» MHz modulation
instead of kHz

¢ Sounding rocket test

Actuator

| Actuatable
Mirror

collimated -

pinhole /

"\._Fixed Mirrors " |4

" Aerospace
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