Center for Advanced Turbomachinery and Energy Research Vasu Lab

LED-based Absorption Sensors for Early Fire and Hazardous Gases Detection for Flight Vehicles and Propulsion Engines Prof. Subith Vasu

Center for Advanced Turbomachinery and Energy Research (CATER), Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, 32816 <u>subith@ucf.edu</u>

ASME Turbo Expo 2018 Lillestrøm, Norway June 11, 2018

ATER ing to the energy needs of society

Organization

- Fundamentals of spectroscopy and absorption technique
 LED sensor design and lab validation
- Demo fire sensor flight test results

Organization

Fundamentals of spectroscopy and absorption technique LED sensor design and lab validation Demo sensor flight test results

Absorption Spectroscopy and Beer's Law

Beer Lambert law of absorption

ERS

$$A_{\lambda} = -\ln\left(\frac{I_{\lambda}}{I_{\lambda,0}}\right) = k_{\lambda}L\chi$$

 A_{λ} = spectral absorbance I_{λ} = transmitted radiation at λ $I_{\lambda,0}$ = incident radiation at λ k_{λ} = spectral absorption coef. L = path length χ = mole fraction of target gas

2

3

s - Path variable

Wavelength (µm)

 x_i - Molar raction of ith species

CS.

 $I_{\lambda,0}$ at

Detector

6

Organization

Fundamentals of spectroscopy and absorption technique

LED sensor design and lab validation

Demo sensor flight test results

Sensor Design Using LEDs

- Three MIR LEDs centered at
 - 3.6µm (for reference)
 - 4.2µm (CO₂)
 - 4.7µm (CO)
- LEDs amplitude modulated at different frequencies

- Band pass filters
- Collimating lenses
- Pellicle beam splitters
- Thermo-electrically cooled photovoltaic detector

Sensor Overview and Operation

OFCENT

TERSITY

Pitch

OF CENTRAL SHARES

Simulations using Zemax (Optic Studio)

🧿 Zemax 13 Premium -	23003 - C:\Users\Kyle\Di	ropbox\School\UCF\Res	earch\Vasu\Design\LED	Spectroscopy\Simulatio	n\radialC1_47_4.ZMX	A	A	and seals	B1 - 1 - 1 - 1	A	
File Editors System	Analysis Tools Repo	orts Macros Extensio	ns Window Help								
New Ope Sav Sas	Bac Res NCE	MFE MCE TDE	Upd Upa Gen Wa	L3n LSn Ol	bv Rtc Ltr Dvr F	db Dis Gmp	Opt Glb Ham	Tol Gla ABg Sfv	Xis Len Pre	Chk Vop	
🚱 Non-Sequential Component Editor											
Edit Solves Tools View Help											
Object Type	Comment	Ref Object	Inside Of	X Position	Y Position	Z Position	Tilt About X	Tilt About Y	Tilt About Z	Material	
1 Source Ra	LED Source	0	0	0.000	0.000	0.000	0.000	0.000	0.000	-	
2 Standard	Col Lens 1	0	0	0.000	0.000	7.040	0.000	0.000	0.000	CAF2	
3 Standard	Col Lens 2	0	0	0.000	0.000	57.400 V	0.000	0.000	0.000	CAF2	
4 Standard	Launch Lens 1	0	0	0.000	0.000	199.900 F	0.000	0.000	0.000	CAF2	
5 Standard	Launch Lens 2	0	0	0.000	0.000	222.000	0.000	0.000	0.000	CAF2	
6 Cylinder	Pitch HWG	0	0	0.000	0.000	234.940	0.000	0.000	0.000	100000	
/ Annulus	(-11)	0	0	0.000	0.000	284.940 F	0.000	0.000	0.000	ABSORB	
8 Standard	Cell Col Leng 2	0	0	0.000	0.000	343.001	180.000	0.000	0.000	CAF2 CAF2	
10 Appulus	CEII COI LENS 2	0	0	0.000	0.000	375 326 5	0.000	0.000	0.000	ABSORB	
10 Annulus		0	0	0.000	0.000	455.032 F	0.000	0.000	0.000	ABSORB	
12 Standard		0	0	0,000	0,000	474 226 1	0.000	0,000	0.000	C7 F2	
•											
🧐 1: NSC 3D Layout					🤕 4: D	etector Viewer 3					
Update Settings Pri	int Window Text Z	oom			Update	Settings Print Wi	ndow Text Zoom				
						1.3897 3.0499 2.7109 2.3721 2.0332 1.6943 1.3555 1.0166 0.6777 0.3399 0.0000			•		
4						Detector Image: Incoherent Irradiance 10/6/2013 Detector 19, NSOG Surface 1: Size 1.000 W X 1.000 H Millimeters, Pixels 500 W X 500 H, Total Hits - 2426178 Peak Irradiance : 3.38372+000 Watts/W ²² Total Power : 1.21312+000 Microwatts			-		

Radiant Zemax

Simulations: Launch Lens FL

3.6 μ m LED w/TEC 4.2 μ m LED w/TEC 4.7 μ m LED w/TEC

D 3.3

Filters Selection

OF CENTR

*1963

FLO

(VERSIT)

Detector & Catch Optics

- Lenses: 2x BD-2 Aspheric Lens
 - Effective Focal Length: 5.95mm
- Detector: VIGO Systems PVI-2TE-5
 - Two stage, thermoelectrically cooled

Assembly

Validating

Detection limit and time resolution²¹ characterization

- Early evaluation testing done at ORNL
- Measurements were taken using a flow cell with a path length of 8cm
 - Neat CO₂ measurements
 - Neat CO measurements
 - Simultaneous measurements/evaluation of cross-interference
- Time resolution testing
 - Chopper wheel with plastic to simulate absorption

Output to Test Cell

Neat CO₂ Results: 30ppm

Detection Limit: 30ppm (function of path length L)

Neat CO Results: 400ppm

Detection Limit: 400ppm (function of path length L)

Simultaneous measurements of CO and CO₂

Organization

 Fundamentals of spectroscopy and absorption technique
 LED sensor design and lab validation

Demo sensor flight test results

Team Members & Sponsoring Organizations

Principal Investigators

Dr. Subith Vasu **University of Central Florida**

Dr. Jay Kapat (Co-PI) **University of Central Florida**

Collaborators

Dr. Bill Partridge Jr. **Oak Ridge National Laboratorv**

Sponsoring Organizations

Center of Excellence for

Commercial Space Transportation

Dr. Anthony C. Terracciano

Post-Docs

Graduate Students

Michael Villar University of Central Florida

Kyle Thurmond University of Central Florida

Justin Urso

University of Central Florida

Erik Ninnemann **University of Central Florida**

26

Need for Gas Sensors on Spacecraft

Spacecraft cabin air is confined aboard spacecraft and toxic gases may accumulate
Ethylene

- Toxic gas sources include
 - Human activity
 - * Astroculture
 - **System malfunctions**

Rapid detection is necessary to ensure safety of crew & experiments

Image Credits NASA

Formaldehyde

mage Credits NASA

 CO_2

Urea

NH.

CO

Tabletop Sensor

Calibration of Tabletop Sensor

- Calibration study performed while CO and CO₂ were flowed through a test cell
 - Test was performed with simultaneous CO/CO₂ test gas
 - No interference was observed
- Calibration Curves as shown

ERSI

***** OSHA permissible exposure limits (PEL) shown for reference

Tabletop Moder

Flight Test

³² **Flight Test Sensor Electrical System**

ERSI

Pre Flight Testing at the UCF Environmental Chamber Testing

*****Test **Conditions** Duration 4 hours **∜**T_{min} -20°C ✤T_{max} 23°C ♦P_{min} 0.27 kPa ♦ P_{max} 101 kPa No observed issues with operation

High Altitude Balloon Flight Results

CEN

¥1963

ERSIT

Learned Lessons from Beamspliter Balloon Flight

- ✤ Low SNR
 - 45% Intensity loss at each beamsplitter
 - Test cell is too small
- Band pass filters limit versatility
 - Poor overlap of CO feature with 4.7 μm filter
 - Gases outside of bands are nondetectable
- High signal variance from calibration
 - LED temperature regulation was sub par
 - Nested ground loops caused increased noise
- Sensor is too big
 - ✤ High TDP
 - ✤ Large volume
 - ✤ Heavy

E

Rethinking & Improving the Sensor Design

- Weight Reduction: Laser cut acrylic enclosure
 - Test cell no longer needed
- Optical System Simplification: 3mm internal
 Optical System Simplification: 15 a reference LED opended in
 - 15% change in absorbance of CO2 between O'C and 40°C
 - If 22°C is nominal; -25% irradiance at 40°C, 218% irradiance at 0°C

68.43 mm

- <u>What else can be included in the sensor</u> - Erequency modulation based temperature measurements - How can low end sensitivity be enhanced?
 - Increase the optical path length
 - <u>11.38 mm</u>, <u>S</u>econdary Condenser

20.46 mr

10 °C

8.91 mm

Collimating Lenses

Condensed Electrical Systems

Legend											
C₁ 100 µF	C₅ 3.3 mF	L₁ 33 µH	P ₁	30 kΩ							
C ₂ 220 μF	C ₆ 10 nF	R ₁ 1 kΩ	P ₂	50 kΩ							
C ₃ 33 nF	C ₇ 1 nF	R ₂ 200 kΩ									
C₄ 330 µF	C ₈ 100 nF	R ₃ 100 Ω									

Maximum power draw reduced to 17W, 10.6 of which is cRio

Condensed Flight Data

- PRbtodibde@atpptit
 sppetrums
 - ----212161allatapopionitstsampledat 1633alkdpbzedat100 kHz
 - --FFFTapaphieleideteræaken sæmphelesetet
- •• Lbouesoffmaainnaa comeeppodestocCQ₂ meeaeneentss
- F_{max} and A_{max} are both temperature dependent

 F_{max} transient at startup
- After, ↑ F_{max} and T_{Enc} ↑
 ↓ A_{max} envelope and T_{Enc} ↑
- Linear relations are found for F_{max} and A_{max} under constant CO₂

SNALLS * 1963*

Conclusions & Future Work

- LED based gas sensor is to be used for the detection of toxic compounds in spacecraft air
- Both amplitude and frequency modulation are simultaneously used in the sensor
- Next iteration will use multiple LEDs and variable path optical system to enhance species selectivity and LDL
 - MHz modulation instead of kHz
- Sounding rocket test

Acknowledgements

Vasu Lab

Research at UCF was supported by financial assistance from FAA-COE-CST, Space Florida, and Florida Space Institute. The authors thank Prof. Robert Peale and Kyle Thurmond for help with the environmental chamber tests, and Zach Loparo for assistance with data processing.

Publications for further reading

- Anthony Terracciano; Kyle Thurmond; Michael Villar; Justin Urso; Erik Ninnemann; Akshita Parupalli; Zachary Loparo; Nick Demidovich; Jayanta S. Kapat; William P. Partridge, Jr.; S. Vasu, "Hazardous das detection sensor using broadband LED based absorption spectroscopy for space applications", *New Space*, 2018, 6 (1), 28-36. Cover Page Article.
- Kyle Thurmond; Zachary Loparo; W.P. Partridge Jr.; Subith S. Vasu; "A Light-Emitting-Diode (LED) Based Absorption Sensor for Simultaneous Detection of Carbon Monoxide and Carbon Dioxide", Applied Spectroscopy, 2016, 70 (6), 962-971.

