

Task 244: Autonomous Rendezvous and Docking for Space Debris Mitigation

Prof. Steve Rock

COE CST First Annual Technical Meeting Boulder, CO 9 November 2011

Overview

- Team Members
- Purpose of Task
- Research Methodology
- Results, Schedule and Milestones
- Next Steps
- Contact Information

Team Members

Participants:

- Prof. Steve Rock (PI)
- Jose Padial (PhD student)
- Marcus Hammond (PhD student)

Affiliation:

Stanford University Aerospace Robotics Laboratory Department of Aeronautics and Astronautics

Purpose of Task

- Goal: Develop new technology to enable safe, autonomous rendezvous and docking with disabled spacecraft or capture of debris
- Objectives: Develop and demonstrate robust autonomous rendezvous and docking (AR&D) sensing technology for
 - Targets undergoing complex, potentially tumbling motion
 - Damaged and/or uncommunicative spacecraft
 - Orbital debris

Retrieval of Westar VI, a stranded communication satellite, courtesy sciencephoto.com

Research Methodology

- Extend (and fuse) our previous work in feature-based (vision) and range-based (LIDAR) SLAM/SfM to achieve
 - Accurate relative pose estimation
 - Accurate and *dense* 3D target reconstruction
 - Robust performance in the harsh lighting environment of space
- Enable capability for potential use on small satellite missions
 - Low weight, size, and power budget sensor suite
 - Camera(s) and low-power LIDAR

Estimate of relative position, orientation, translational velocity, angular velocity

Research Methodology

Validate algorithms in laboratory demonstrations using existing facilities within the ARL

Rotating base motion simulator

Prescribe complex motion (e.g. torque free) to a target hardware model

• 6DOF gantry

Fly a sensor suite in a prescribed trajectory to observe tumbling target

Schedule and Milestones

- Year 1:
 - Demonstrate rendezvous and docking using a baseline SLAM algorithm
 - Develop a plan to accommodate lighting anomalies
 - Develop a plan to port the SLAM algorithms to low power proessors
- Year 2:
 - Modify and extend algorithms to account for lighting anomalies
 - Modify and implement algorithms for low-power computer processors
 - Demonstrate extended algorithms using ground-based simulator
- Year 3:
 - Begin development of a small-satellite demonstration

Work to Date: Simulation Environment

Camera-LIDAR simulation environment

- Simulated LIDAR range scanning of 3D target models
- Simulated images
- Environment designed to allow for injection of noise into any point of the measurement and estimation pipeline

Contact Information

Prof. Steve Rock

rock@stanford.edu

1.650.723.3343