Unified 4D Trajectory Approach for Integrated Management of Commercial Air and Space Traffic

FAA CoE for CST Technical Meeting Millennium Harvest House, Boulder, CO November 9, 2011

Juan J. Alonso and Thomas Colvin Department of Aeronautics & Astronautics Stanford University

Federal Aviation Administration

Overview

- Team members
- Purpose of Task
- Research Methodology
- Results
- Next Steps
- Contact Information

Team Members

- PI: Juan J. Alonso, Department of Aeronautics & Astronautics, Stanford University
- Thomas J. Colvin, Graduate Student, Department of Aeronautics and Astronautics, Stanford University
- Collaborations/discussions with:
 - Banavar Sridhar, NASA Ames
 - Karl Billimoria, NASA Ames

Purpose of Task

- Projected growth in demand will make it increasingly hard to accommodate launches on a SUA basis
- Looking for a more rational approach that:
 - can adapt to fluctuating frequency of launches
 - can accommodate uncertainties in trajectories
 - ensures proper separation at all times
 - can be integrated with FAA's NextGen system

Research Objectives

- 1. Develop plausible architectures for an Integrated Airspace Management System (IAMS)
- 2. Research and develop the foundation of such a tool based on time-space probabilistic trajectories
- 3. Create a prototype implementation for a proof-ofconcept system

During first few months, we are focusing on item

Methodology & Results

- Problem:
 - Need Special Use Airspace (SUA) for rocket launch
 - Current method for creating SUA may be overly conservative
 - Fairness issues: are we favoring one industry over another?
 - No quantitative framework for creating SUAs

- Proposed Solution:
 - Create a probabilistic framework for creating SUAs to a specified level of safety

Conceptual Framework

7

Initial Research Goals

• Focus on:

Investigate ways in which a compact 4-D envelope can be created and specified

- Jemonstrate the 4-D envelope concept in 3-D (x,y,t)
- Begin creating a software architecture that generates 4-D envelopes for specific launch profiles
- Use Monte Carlo simulation to <u>approximate</u> the rocket location PDF, sampled at many points, to a given level of safety
- Provide hooks for, but do not spend significant time on (refined later):
 - Accurate characterization of weather profiles, failure modes and probabilities, debris model

Nominal Trajectory

- 2-D round rotating Earth
 - Propagate r, V, φ, γ
- SSTO launch vehicle
- Optimal trajectory has thrust vectoring (Τ, ξ)
- Aerodynamic effects are roughly modeled

Source: Capristan, F. "Aerodynamic Effects in Launch Vehicle Optimal Trajectories"

Weather Uncertainty

20% Uncertainty in Wind Velocity

5% Uncertainty in Temperature

Creates Drag Uncertainty

 $C_D = (2 - \cos \alpha) \frac{0.4750 M_\infty^2 - 0.7127 M_\infty + 0.3049}{M_\infty^2 - 1.914 M_\infty + 1.042}$

Uncertain Lift-off Time

One-sided, multi-modal pdf

Rockets do not always launch on time

Failure Uncertainty

Failure occurs near pad or at max q

Assume 1% of all launches fail

What We've Got So Far

- Software framework that accepts arbitrary:
 - Thrust profiles (TVC, etc)
 - Weather profiles for wind and temperature, with uncertainty parameters for each
 - Failure parameters and distributions
 - Debris model
- Outputs:
 - Collection of uncertain trajectories with debrisgenerating failure events from a MC simulation

4D Probabilistic Trajectories and Envelopes

- Trajectories as points in space and time
- Risk level of 10^-10, approximated with MC
- How do we turn this set of trajectories into something useful?
- Methods Available
 - Level Sets
 - Delauney Triangulation
 - Convex Hulls
 - Non-convex Footprints

Swinging Arm

- Generates multiple disconnected "footprints"
 - Non-convex, non-regular polygon
- Creates groupings that visually appear more accurate
- Generalizes up to 3D
- Arm short enough, multiple footprints

Source: Galton, A. "What is the region occupied by a set of points?"

- Cons:
 - Non-regular polygons

Footprint Example

Footprint Example

Making the next footprint

 Arm length short enough, get multiple footprints

 Remove interior and boundary points

- Crossings:
 - Odd is in
 - Even is out

An Early Footprint

Footprint Through NAS (L=40km)

Footprint Through NAS (L=4km)

Footprint Through NAS (L=2km)

Volume Savings

- Tube: 51,400 km2 sec
 - Conservative. No safety factors.
- Convex: 15,300 km2 sec
 - 30% of the original volume
- Footprint 2km arm: 6,500 km2 sec
 - Only 13% of the original volume!

- Conclusions & Future Work

- Code accepts arbitrary thrust, weather, and failure profiles for Monte Carlo simulation of uncertain trajectories
- Creates multiple polygonal envelopes around the trajectories (and debris) that represent a no-fly zone
- Demonstrates the possibility of significant volume (area*sec) savings over conventional tube approach

- Future Work:
 - Full 4-D (Swinging Slab)
 - Accurate weather and debris models with uncertainty
 - Active control in rocket during ascent and staging
 - Integration with NASA's FACET tool for scenarios with

References

- De Berg, M., et al. "Computational Geometry Algorithms and Applications", Springer 1998
- Capristan, F. "Aerodynamic Effects in Launch Vehicle Optimal Trajectories", Stanford 2010
- Osher, S.J., Fedkiw, R.P. "Level Set Methods and Dynamic Implicit Surfaces", Springer 2002
- Galton, A., Duckham, M. "What is the region occupied by a set of points?" GIScience 2006, LNCS 4197, pp. 81-98, 2006
- Goldman, R. "Intersection of Two Lines in Three-Space." In Graphics Gems I (Ed. A. S. Glassner). San Diego: Academic Press, p. 304, 1990.
- Colonno, M. R., S. Reddy, and J. J. Alonso. "Multi-Fidelity Trajectory Optimization with Response Surface-Based Aerodynamic Prediction." (2008)
- Stengel, Robert. "Launch Vehicle Design: Trajectories and Aerodynamics." Launch Vehicle Design Class Notes. N.p., n.d. Web. 26 May 2010.
 <<u>http://www.princeton.edu/~stengel/MAE342Lecture3.pdf</u>>.

Backup Slides

Level Sets

Source: http://en.wikipedia.org/wiki/Level_set_method

 Useful for visualizing dynamic interfaces

N-Dimensional surface is slice of an (N+1)D function

Easily handles pinching and merging interfaces

Set operations are easy

Level Set Example

- Hard to create the distance function
- Finding the area enclosed is not straightforward
- Allows holes within the boundary
- Slow

Delauney Triangulation

Source: Galton, A. "What is the region occupied by a set of points?"

- Overview
- Connect all dots with series of triangles
- Remove boundary edges
 - Generates single connected regular polygon
- Cons:
- Want to eliminate most points! Worth it?
- Creates a single shape

Convex Hulls

Easy to generate

Wastes a lot of space

Only get one shape

 Can get these with footprint methods

Swinging Arm Algorithm

- Order all points from top to bottom, right to left.
- Set all points as 'available' and pick an arm length
 - Store top-right available point in footprint and set it as current point:
 - Swing the arm clockwise from current point until it hits another point
 - Store this point as being in the footprint and set it as the new current point
 - Repeat until current point == starting point
 - Set all points that form or are interior to the footprint as 'unavailable'
 - Repeat until all points are unavailable
- XXXX