

COE CST First Annual Technical Meeting:

FCAAP Overview

F. S. Alvi (FSU) J. Kapat (UCF) N. Fitz-Coy (UF)

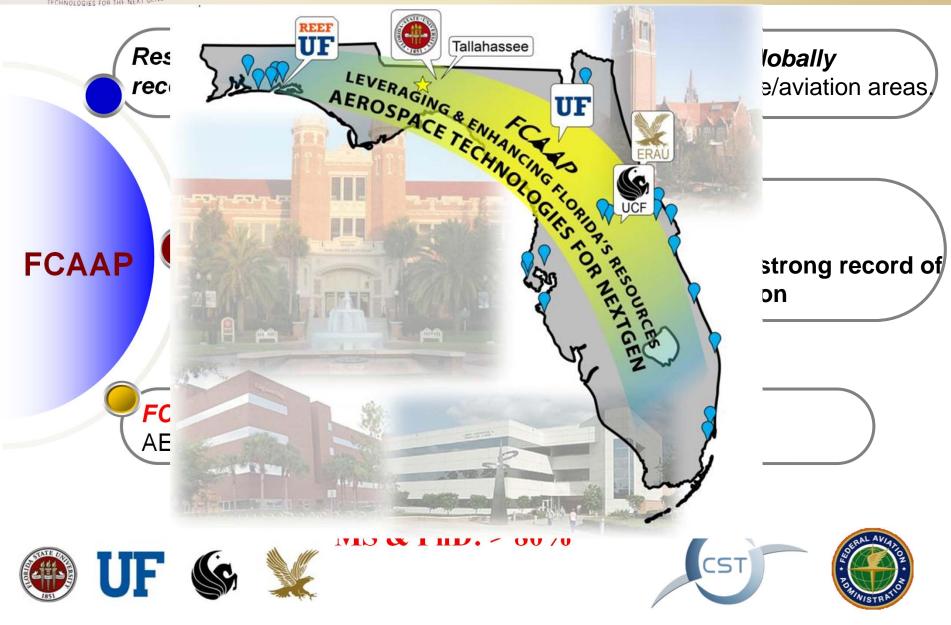
• FCAAP Overview

- Background
- Capabilities, Resources, Facilities

• Projects & Research

- Current
- Potential
- Lunch

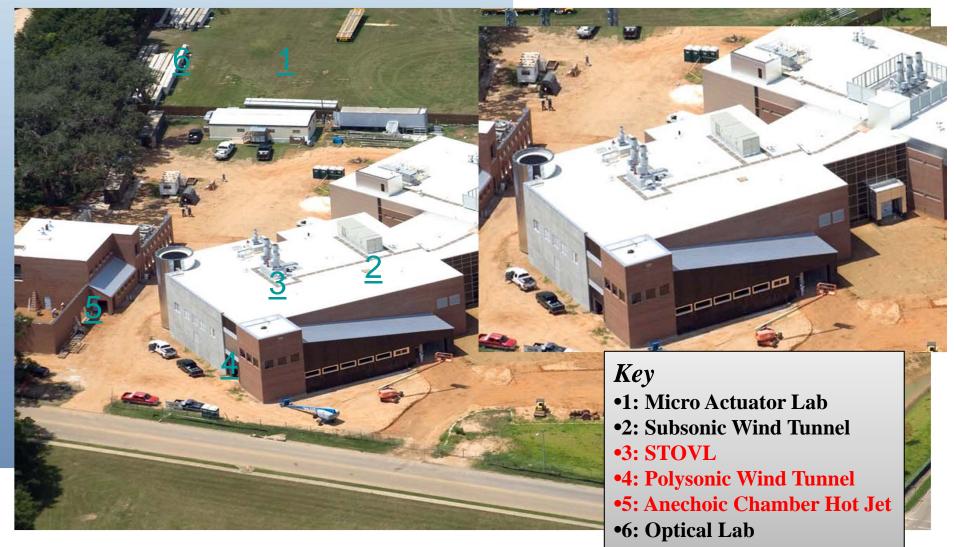
FCAAP Background


- Established through a competitive program in late 2008
 Florida Legislature: "The 21st Century Technology, Research, and Scholarship Enhancement Act"
- "Centers of Excellence to give Florida leadership in key emerging technology areas with ...potential for economic and societal impact in the years to come"
- The only state-wide, multi-university, SUS Center of Excellence in Aerospace, Propulsion and related areas... in Florida
- To develop *innovative technologies* for the *next generation* of air and spacecraft and related areas (energy, power generation), in collaboration with *industry and government*

FCAAP Team

Research Areas/Expertise

Experimental Fluid Dynamics
 Aerodynamics, Gas Dynamics, Aeroacoustics


- >Thermal Management
- > Advanced Diagnostics
- >Active Flow and Noise Control
- > Modeling: Low Order, Stochastic
- > High Performance Computing
- System Design & Control
- > Jet & Rocket Noise and its Control
- > Advanced Turbomachinery: Design & Development Tools
- Sensors & Actuators: Design, Fabrication & Implementation
- >Advanced/Smart Materials
- ➤ and much much more...

AME Research Building A New FCAAP Facility

~ \$25 + million, 60,000 + sf, Multidisciplinary Research Center

Polysonic Wind Tunnel

Next Generation Polysonic Facility for Transformative Active Control Technologies & Non-Intrusive Flow

- Mach No. : 0.2 to 5.0 including Transonic regime
- Test Section Size: 12" x 12" Square cross-section
- Variable Re #:
- Typical Run Time: 60 sec.
- Optical access on three sides
- Excellent Flow Quality

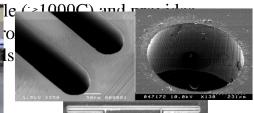
Facilities

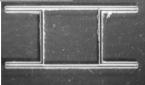
<u>Non-vitiated (clean air), continuous</u> <u>operation, high-enthalpy, facility</u>

➢ electrically operated, first stage heater with maximum temperature of 1300K (1880F)

 ➤ a second, water injection/high-enthalpy heating stage with a continuous, maximum operating temperature of 1800K (2780F).

> Mach 6.5 flight enthalpy simulation.


<u>Laser Micromachining of</u> <u>Materials for High</u> <u>Temperature MEMS-based</u> <u>Sensors</u>


- Goal: To produce miniature, robust mechanical sensors for high-temperature applications.
- Approach: Develop process for laser micromachining of sapphire to facilitate use of optical transduction schemes

>Payoff: Enables measurements in environments that

Laser and machined sapphire samples

11/14/2011

Our Partners & Sponsors

Current FAA-COE Projects

241 - High Temp Pressure Transducers (Oates–FSU; Sheplak - UF)

244 - Autonomous RDV & Docking for Space Debris Mitigation (Collins – FSU; Fitz-Coy – UF, Axelrad – CU; Rock - SU)

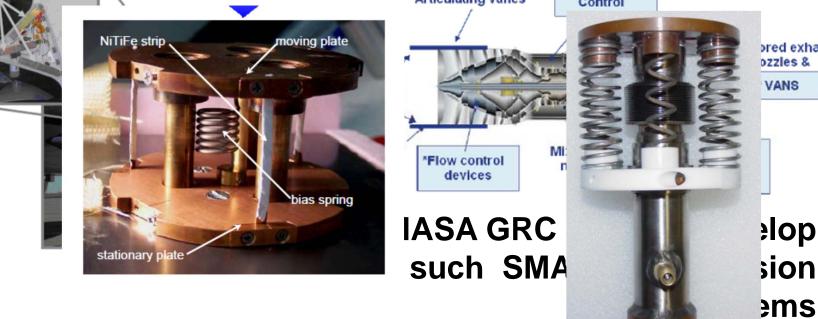
▶ 253 - Ultra High Temp Composites (UCF – Gou, Kapat)

COE CST First Annual Tech Meeting (ATM1) November 9 & 10, 2011

COE-CST Related Research Ongoing & Future

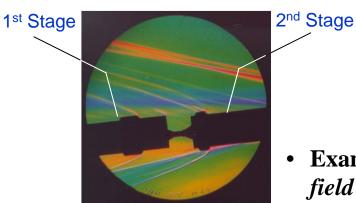
COE CST First Annual Tech Meeting (ATM1) November 9 & 10, 2011

COE-CST Related Activities


- ASTREC: Advanced Space Technologies Research & Engineering Center An NSF I/UCRC to promote advancements in the principles and technologies of responsive, cost efficient spacecraft systems
- JOSS: Journal of Small Satellites (online peer reviewed journal)
- EdUCE Workshop: (Educate Using CubeSat Experience NSF RET) Hosted workshop for high school teachers to introduce/implement STEM principles using CubeSats.
- DebriSat: Design and fabrication of a micro class satellite subjected to hypervelocity impact to emulate an on-orbit collision. Debris fragments will be used to improve the NASA standard breakup model. (NASA Orbital Debris Programs Office JSC)
- Microscale Sensors for Hypersonic Flow: NASA SBIR Phase I (with Interdisciplinary Consulting Corporation) Phase II in review

Shape Memory Alloys

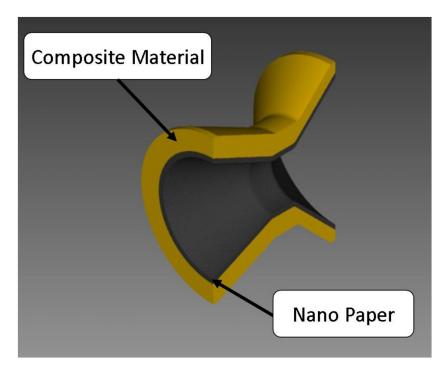
Variable Geometry Chevrons Cryogenic Temp. Thermal Switches Shape changing blades Articulating vanes MITIFe strip moving plate



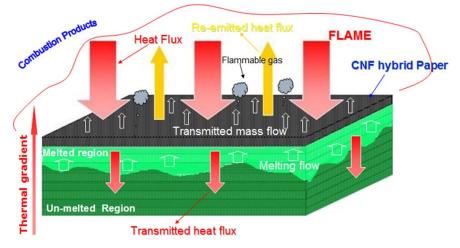
Heat Pipe Type Thermal Switch

FLORIDA CENTER FOR ADVANCED AERO-PROPULSION SUPERSONIC Wind tunnel Studies

Stage separation studies on multi-stage Rockets / launch vehicles



- Examine and understand the *complex interference flow field* between two separating stages of multi-stage vehicles
- Measurement of forces, moments and surface pressures on separated stage



Nanocomposite Based Ablative Thermal Protection System

- Conducting heat in one direction, along the alignment of the nanotubes, but reflecting heat at right angles to the nanotubes
- > Anisotropy of thermal conductivity of nanopaper: in-plane and through-thickness direction

Nanocomposite Nozzle of Solid Rocket Motor

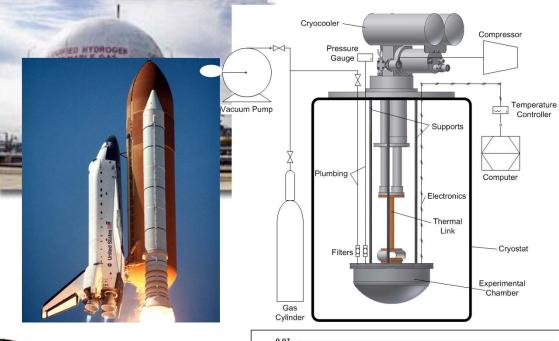
Ablation Performance of Nanopaper

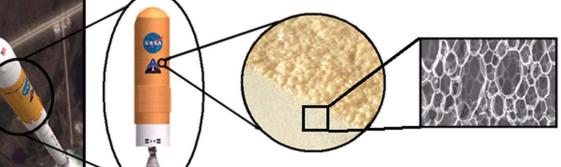
- Permeability of the nanopaper
- Thermal stability of nanoparticles used
- Dispersion of nanoparticles
- Quality of char formation
- Heat capacity and thermal conductivity

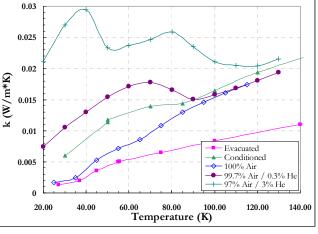
Supersonic Jet Impingement

Sue BurnedOperational/Test Capabilities•Mach Number = 0.5 - 2.5• $T_o = 70 - 2000 F$ • $D_{Jet} = 25.4 - 76.2 mm$ •NPR = Under-ideal-over
expanded•Run duration = 15 min - 20 min•Anechoic chamber: 5.8 m x 5.2
m x 4.0 m Calibrated to 100 Hz

Vehicle Design, Flight Safety: Propulsion Systems: Analyses, Computations & Testing


Launch Systems – Study and **Control** the extreme, highly unsteady launch environment due to rocket plume impingement.




Cryogenic Insulation Materials For Aerospace Vehicles

Motivation

- Cryogenic fuel storage
- Aerospace applications
- Ground and vehicle systems

Proposed Activities for 2012

Challenge: Thermal conductivity of porous media cannot be measured directly. Dependent on gas type, pressure, temperature, contact force...

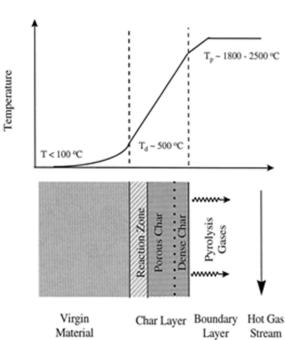
Goal: Determine effective thermal conductivity of different materials while measuring and/or controlling the above factors

Solid Foam Insulations Powder Insulations Multi-Layered Insulations (MLI)

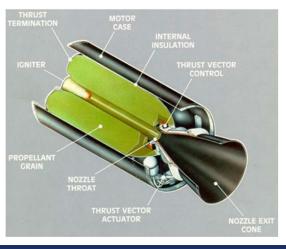
Next COE-CST Meeting THIRD FCAAP SYMPOSIUM

Late April 2012 HOLD THE DATE!

Additional slides


Ultra High Temperature Composites for Thermal Protection Systems

Objective


To develop ultra high temperature light weight composites with embedded health monitoring for inherent safety and realtime assessment of thermal protection system applications in hypersonic space vehicles

Goals

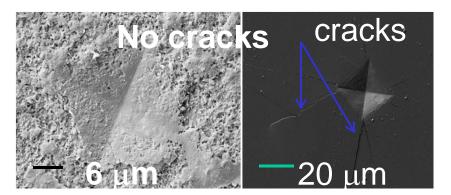
- Ablatives materials against solid rocket exhaust plumes at 3,600°C with Al₂O₃ at very high velocity (>Mach 1)
- Less ablative weight for current rockets and/or higher power rocket motors within current ablative performance envelopes

COE CST First Annual Technical Meeting (ATM1) November 9 & 10, 2011

Federal Aviation Administration

23

High Temperature Pressure Sensors for Hypersonic Vehicles


- Purpose
 - Design, fabricate, and characterize a robust, highbandwidth micromachined pressure sensor for harsh environments
- Objectives
 - Develop laser micromachining processes for patterning of structures in sapphire and alumina
 - Develop bonding process to for fabrication of multi-wafer sensors
- Goals
 - Sensor operation in temperatures >1000°C
 - Large operational frequency range (>10 kHz)

Fracture Mechanics of Sapphire: High Temperature Sensor Applications

- Commercial pressure sensors capable of ~500°C
- Sapphire based sensors can potentially extend temperature range to ~1500°C
- <u>Research Goal</u>: Understand material failure as a function of manufacturing processes and temperature
- <u>Objective</u>: Quantify anisotropic fracture as a function of laser micromachining
- <u>Observations</u>: Laser micromachining mitigates surface fracture

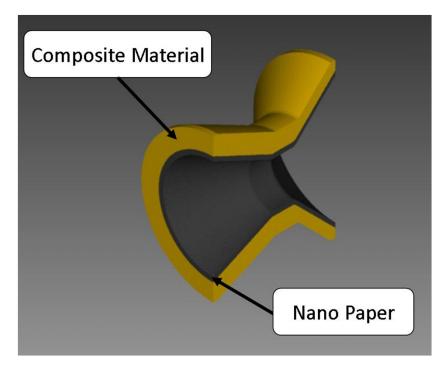
Virgin specimen

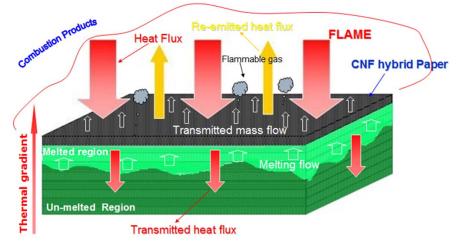
Fast Trajectory Planning for Autonomous Rendezvous and Docking

Motivation:

- A recent study by NASA identifies a minimum of at least five debris removal missions per year beginning in 2015 is required to maintain (not reduce!) the current population of space debris.
- One approach to space debris mitigation is the development of an autonomous "Space Tow Truck" capability for direct removal of aged or disabled spacecraft.
- This research considers fast trajectory generation for autonomous rendezvous between a space tow truck and a debris

COE CST First Annual Tech Meeting (ATM1) November 9 & 10, 2011





Nanocomposite Based Ablative Thermal Protection System

- Conducting heat in one direction, along the alignment of the nanotubes, but reflecting heat at right angles to the nanotubes
- > Anisotropy of thermal conductivity of nanopaper: in-plane and through-thickness direction

Nanocomposite Nozzle of Solid Rocket Motor

Ablation Performance of Nanopaper

- Permeability of the nanopaper
- Thermal stability of nanoparticles used
- Dispersion of nanoparticles
- Quality of char formation
- Heat capacity and thermal conductivity

COE CST First Annual Technical Meeting (ATM1) November 9 & 10, 2011

