Fracture Mechanics of Sapphire for High Temperature Pressure Transducers

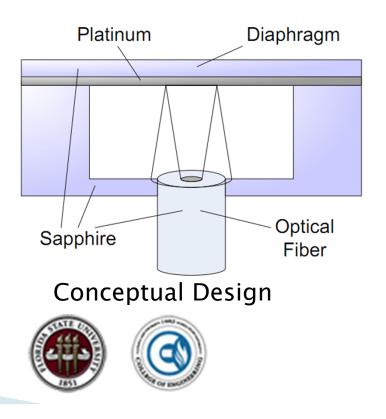
Justin Collins Advisor: William Oates

Department of Mechanical Engineering Florida A&M / Florida State University Tallahassee, FL 32310

Collaborators: Mark Sheplak, David Mills, Daniel Blood

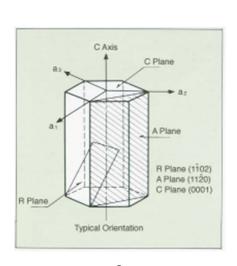
Overview

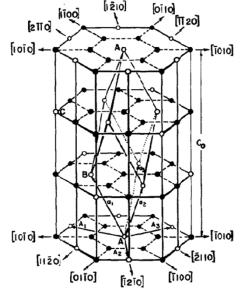
- Motivation
- Background
 - Structure Property Relations
- Current Work
 - SEM Characterization
 - Fracture Analysis
- Summary and future work


Motivation

- Commercial sensors capable of up to approximately 600°C
 - Uses SOI technology
- Alternative material sapphire: potentially capable of up to 1600°C
- Laser machining to cut specimens
 - Hard
 - Chemically Inert

Kulite Pressure Transducer




Structure-Property Relations

- Sapphire crystallographic structure
 - Complicated by hexagonal cage & internal rhombohedral structure
- Anisotropic elastic behavior
 - Rhombohedral—not hexagonal

$$\sigma_{ij} = c_{ijkl} \varepsilon_{kl}$$

Melting temperature 2030 °C

Kyocera wafer cuts

Kronberg, acta metallurgica, vol.5, 1957

Table 4. Determined elastic constants of corundum and their standard deviations in OPa. Previous data are also shown

C ₁₁	C ₃₃	C44	C ₁₂	<i>C</i> ₁₃	C14	Ref.
496.9 ± 1.4 496	500.5 ± 1.6 502	146.8 ± 0.2 141	162.3 ± 1.6 135	115.5 ± 1.6 117	-21.9 ± 0.2 -23	present work [8]
496.8 ± 1.8 490.2 497.4	498.1 ± 1.4 490.2 499.4	147.4 ± 0.2 145.4 147.4	163.6 ± 1.8 165.4 164.0	110.9 ± 2.2 113.0 112.3	-23.5 ± 0.3 -23.2 -23.6	[9] [10]
497.4 497.60 ± 0.18	499.4 501.85 ± 0.21	147.4 147.24 ± 0.13	162.6 ± 0.4	117.18 ± 0.19	-22.90 ± 0.11	[11] [12]


Ohno, Phys. Chem. Solids Vol. 47, No. 12. pp. I ION 108. 1986

SEM Characterization

- Fracture characterization
 - Virgin vs. laser machining
- Crack opening quantified
 - Intrinsic crack tip toughness measured

Crack opening displacement

Anisotropic Fracture Stroh's Formalism

- Equilibrium
 - $\nabla \cdot \sigma = 0$
- Constitutive Relation

$$\circ \ \sigma_{ij} = C_{ijks} u_{k_s}$$

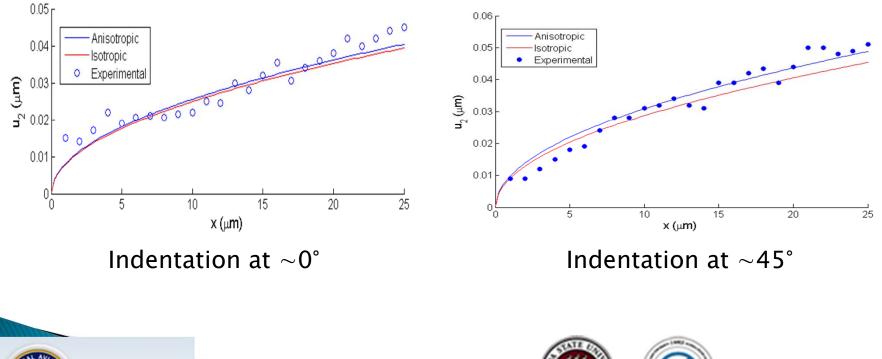
Boundary Condition

• $t_i = \sigma_{ji} n_j$

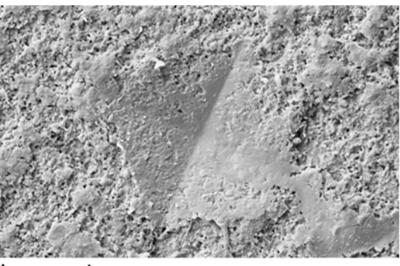
Generalized Stress Potential

• $u_i = 2 \sum_{j=1}^{3} Re\{Aijf(z_j)q_j\}$

Generalized displacement potential


•
$$\varphi_i = 2\sum_{j=1}^3 Re\{B_{ij}f(z_j)q_j\}$$

Fracture Toughness


o $K_{1c} \cong 2.3 \text{ MPa*m}^{1/2}$ • $K_{1c} \cong 2.65 \text{ MPa*m}^{1/2}$ o $Gc \cong 11.65 \text{ N/m}$ • $Gc \cong 16.22 \text{ N/m}$

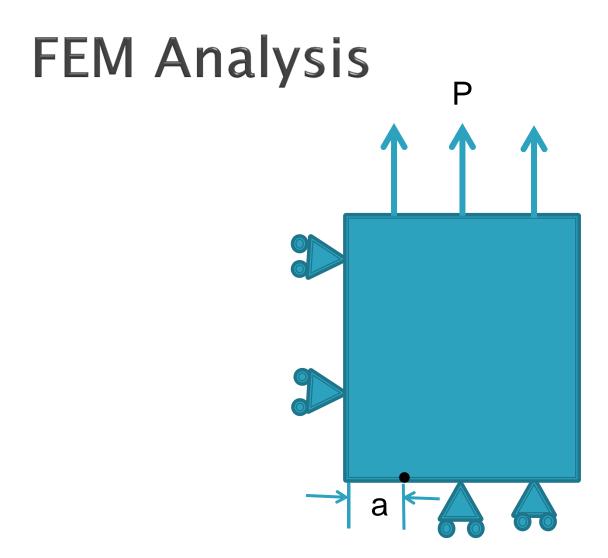
Toughness Induced Laser Machining

- Preliminary Vicker's indentation characterization
- No visible cracks
- Laser machining parameters
 - 10 kHz rep rate, 10 mm/s scanning speed, 3.8 J/cm² fluence, 3um stepover

Federal Aviation Administration

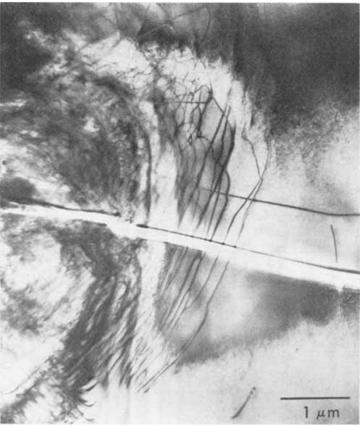
Summary

- Correlated crystal structure with anisotropic elastic properties
- Quantified crack tip toughness in virgin sapphire specimens
 - Good correlation with data in literature
- Laser machining effects on fracture
 - Unusual toughness enhancement
- Hypothesis: Laser induced dislocations
 - TEM characterization and dislocation/fracture modeling currently underway


Acknowledgements

- NHMFL-ASC
- FAA
- FAMU–FSU College of Engineering
- University of Florida
 - Mark Sheplak, David Mills, Daniel Blood, Tony Smitz (UNC Charlotte)

Backup Slides



Dislocation Mechanics

- Basal dislocations associated with a 100-g indentation on a (0001) basal plane section
- Specimen polished with abrasive paper.
- How does laser machining affect the properties of sapphire? Are dislocations induced during the process?

Hockey ,Journal of The American Ceramic Society Vol. 54, 1971

