
Kleespies 1 31st Annual AIAA/USU 

  Conference on Small Satellites 

SSC17-P2-19 

DebriSat, Big Data, and How It Relates to Small Satellites 
 

Joe Kleespies 

University of Florida 

Gainesville, FL USA; +1 813 361 1236 

joeykleespies@ufl.edu 

 

Norman Fitz-Coy 

University of Florida 

Gainesville, FL USA; +1 352 392 1029 

nfc@ufl.edu 

 

ABSTRACT 

DebriSat is a hypervelocity impact (HVI) experiment that aims to generate new debris characterization data to update 

existing orbital debris breakup models. The DebriSat project is currently in the post-impact phase where debris 

fragments are collected, characterized, and recorded. The DebriSat debris categorization system (DCS) is a relational 

database-based big data management solution designed to handle the hundreds of thousands of unique data points 

produced by the DebriSat project. This paper discusses the development process of the DCS and describes how some 

techniques used in the system can be applied to similar small satellite missions to assist in the management of their 

big data challenges. Furthermore, this paper provides some performance analyses of various database engines and 

services that highlight potential pitfalls when dealing with such a large amount of data and metadata. Finally, this 

paper presents some of the lessons learned during the planning, development, and implementation stages of both the 

DebriSat project and the DCS and how these lessons can be integrated into future small satellite missions. 

INTRODUCTION 

Recent advancements in data storage technologies and 

the emerging prevalence of S-, X-, and now even Ka-

band frequencies with data rates larger than 1 Mbps in 

the small satellite industry have led to an exponential 

growth in the amount of data small satellite missions are 

generating. Nowadays, small satellite missions aren’t 

just collecting raw scientific data, these missions are also 

collecting a massive number of additional metadata such 

as precise timing information, location information, 

environmental measurements, and other data about the 

conditions in which scientific measurements are taken. 

This surge in the quantity of data and metadata coupled 

with the complexity of managing the relational links 

between data points poses a classic big data challenge 

that future small satellite missions will need to address. 

DebriSat was not a small satellite. In fact, it was designed 

to be a representative model of modern LEO satellites 

and was the subject of a hypervelocity impact (HVI) test 

conducted in April 2014 to investigate/characterize 

debris fragments generated during on-orbit collisions.1 

Thus, DebriSat was never launched, never collected any 

in-situ measurements, and never sent a single line of 

telemetry. However, the DebriSat project is truly 

representative of the challenges encountered in a big data 

project. Currently, the project has recorded over 120,000 

debris fragments and it is projected that, in total, over 

250,000 debris fragments will be collected and 

characterized.2 Each fragment is tagged, characterized, 

and recorded. Each record contains data fields such as 

mass, linear dimensions, average cross-sectional area, 

volume, shape, color and additional metadata fields such 

as timestamps, revision number, and up to 126 fields for 

high-resolution images. Altogether, the amount of data 

currently being generated by the project is massive; the 

expected size of the final data set is on the order of 14 

TB. In this sense, the project parallels some of the recent 

and upcoming small satellite missions that aim to 

generate equally significant sets of data. DebriSat faces 

the big data challenge of managing the hundreds of 

thousands of data points being produced and the complex 

relationships between data points and metadata. In 

response, the DebriSat Debris Categorization System 

(DCS), a relational-database-based big data management 

solution, was developed to address the big data 

challenges of the project.3 

This paper discusses the development process of the 

DCS and describes how some techniques used in the 

system can be applied to some small satellite missions to 

assist in the management of their big data challenges. 

This paper also provides some performance analyses of 

various database engines and services that highlight 

potential pitfalls when dealing with such a large amount 

of data and metadata. Finally, this paper presents some 



Kleespies 2 31st Annual AIAA/USU 

  Conference on Small Satellites 

of the lessons learned during the planning, development, 

and implementation stages of both the DebriSat project 

and the DCS and how these lessons can be integrated into 

future small satellite missions. 

DESIGN OF THE DCS 

After the DebriSat HVI test in April 2014, the project 

entered the post-impact phase. During this phase, debris 

fragments produced from the HVI test are to be 

collected, characterized, and recorded. It was clear from 

the beginning of the post-impact phase that some sort of 

database or data management system would be needed 

to facilitate this collection, characterization, and 

recording of debris fragments. 

Requirements 

Like any small satellite mission or systems engineering 

process, the design and development of the DCS began 

by establishing a set of preliminary requirements. These 

requirements, described in Table 1, applied not only to 

the DCS, but also to the post-impact characterization 

effort in general. 

Table 1: Preliminary DCS Requirements 

ID Requirement Description 

1 
Facilitate entry and recording of identification, assessment, 

and characterization data for soft-catch foam panels used in 
the DebriSat HVI test. 

2 

Facilitate entry and recording of identification, assessment, 

and characterization data for debris fragments produced by 

the DebriSat HVI test. 

3 Facilitate verification and validation of all recorded data. 

4 Facilitate regular backups of all recorded data. 

5 
Secure access to all recorded data and allow only authorized 
users to add, modify, or verify recorded data. 

6 
Record all actions executed on recorded data, when these 
actions were executed, and who executed them.  

7 
Facilitate the centralized storage of all recorded data and the 
transfer of all recorded data between organizations. 

Architecture Overview 

To achieve the requirements outlined in Table 1, the 

general architecture shown in Figure 1 was devised. The 

DCS consists of a front-end user interface for user entry 

of identification, assessment, and characterization data 

for soft-catch foam panels and debris fragments and a set 

of back-end services to facilitate the recording, querying, 

and backup of entered data. The front-end user interface 

and back-end services are hosted on a private server 

located on the University of Florida campus. Recorded 

data is backed up to a secondary location on the 

University of Florida campus. 

The front-end user interface is designed using PHP, 

HTML, and JavaScript to present easy-to-use forms and 

fields to facilitate the entry and validation of data to the 

end user. The end users, in the DCS’s case, are the 

students collecting, characterizing, and recording soft-

catch foam panels and debris fragments. 

The back-end services consist of a web hosting service, 

database engine, and backup service. Microsoft’s 

Internet Information Services (IIS) is used for the web 

hosting service to present the PHP, HTML, and 

JavaScript pages to the user on the front end.4 Oracle 

MySQL and Microsoft SQL Server are used as database 

engines for the recording and querying of data.5 6 Finally, 

Microsoft Windows Task Scheduler and VSS Backup 

are used for the backup service to periodically copy and 

backup all recorded data to a secondary location. 

Local Server – University of Florida Campus

Front-End User Interface

PHP Scripts to 

Query Data

HTML and 

JavaScript to Print 

Forms and Tables

Back-End Services

MySQL Database 

Foundation to 

Execute Queries

Task-Scheduled 

Windows Backup 

Service Daily

Network Attached Storage – University of Florida Campus

Remote Storage Shares to Store Period Backups 

Performed by Task-Scheduled Backup Service

 

Figure 1: Overview of the DCS Architecture 

Back-End Services 

The selections for the back-end services were made 

before the development of the DCS front end. IIS, 

Windows Task Scheduler, and VSS Backup were all 

chosen for the web hosting and backup services because 

they are all self-contained and are tightly integrated 

within the Microsoft Windows Server environment. The 

Windows Server environment is supported by all the 

member organizations of the project and there is 

extensive documentation, support, and validation of 

these services. Thus, they were selected for the web 

hosting and backup back-end services. 

The selection of a database engine was a bit more 

extensive. There are a multitude of different commercial 

database engines available. Oracle MySQL and 

Microsoft SQL Server (MSSQL) are two of the most 

popular engines. The MySQL database engine excels for 

development environments and smaller production 



Kleespies 3 31st Annual AIAA/USU 

  Conference on Small Satellites 

environments while MSSQL is designed for large-scale 

and enterprise production environments. Both database 

engines have a large set of extensions and add-ons that 

can be used to enhance their implementations. For 

example, the MySQL database engine is compatible with 

the PHPMyAdmin web-based management interface, 

which makes database management much more 

streamlined.7 Similarly, the MSSQL database engine 

includes FILESTREAM functionality for advanced file 

system integration.8 Both database engines are 

customizable to the intended application yet excel in 

different environments. 

During the design and development of the DCS, the 

MySQL database engine was used. However, as 

DebriSat’s data set has expanded in size and scope, the 

MSSQL database engine has been phased in to enable an 

alternative back-end database engine to address future 

scalability challenges. Currently, the DCS supports both 

the MySQL and MSSQL database engines. 

Front-End Interface 

The DCS front-end interface is responsible for 

facilitating the entry, modification, validation, and 

verification of all recorded data. The goal when 

designing the DCS front-end interface was to streamline 

this process of entry, modification, validation, and 

verification. The front-end interface is designed to 

include identification, assessment, and characterization 

data for each debris fragment and soft-catch foam panel 

and was designed in conjunction with the overall post-

impact phase workflow, divided into detection, 

extraction, and characterization. This workflow, shown 

in Figure 2, produces the various identification, 

assessment, and characterization data for each debris 

fragment and soft-catch foam panel. 

One of the guiding design principles for the DCS and the 

DebriSat post-impact effort is to minimize human error 

and maximize efficiency. Designing the DCS front-end 

interface in conjunction with the post-impact phase 

workflow enables very high user efficiency. To 

minimize human error, the DCS front-end interface is 

designed to restrict and validate user inputs during the 

initial entry and subsequent modification processes.  

Furthermore, the front-end interface is designed to 

include external verification functionality as a last step 

in the post-impact phase workflow. Verification is 

performed by users who have not edited the debris 

fragment or soft-catch foam panel in question to provide 

a third-party unbiased verification of the recorded data. 

Finally, the DCS front-end interface is designed to 

include inherent security mechanisms to allow only 

authorized users to view, add, edit, or verify recorded 

data. The front-end interface is also designed to include 

logging and auditing functions to ensure complete 

revision histories for each debris fragment and soft-catch 

foam panel. 

D
et

ec
ti

o
n

Foam 
Preparation

X-Ray Image 
Acquisition

Foam Panel 
Entry

Image 
Stitching

Fragment 
Detection

Post X-Ray Processing

E
x
tr

a
ct

io
n

Foam 
Verification

Extraction Fragment Entry

C
h

a
r

a
ct

er
iz

a
ti

o
n

Assessment

Material 2D/3D Color Shape

Measurement

Mass Size

Calculation

Volume ACSA AMR

Fragment 
Modification

Fragment 
Verification

 

Figure 2: Post-Impact Phase Workflow 

Ultimately, the use of a front-end/back-end dichotomy in 

these types of big data management systems works well 

when the goal of the application is to maximize 

efficiency and minimize human error. Further, the design 

choices made for the back-end services and the 

principles used to guide the design and development of 

the front-end interface can be used to guide the design of 

similar systems for future small satellite missions. 

DESIGING FOR SMALLSAT MISSIONS 

The front-end – back-end architectural design of the 

DCS lends itself well to small satellite applications. 

Typically, small satellite missions will receive raw 

telemetry and downlink through some sort of back-end 

layer at a ground station before processing the data to be 

displayed on some presentation layer. This raw telemetry 

and downlink can be directly fed into a data management 

system back-end database engine like the one used on the 

DCS, then processed and presented on a front-end 



Kleespies 4 31st Annual AIAA/USU 

  Conference on Small Satellites 

interface where users can interact with, modify, or 

correct recorded data. 

The DebriSat DCS uses similar back-end database 

engine connections such as Open Database Connectivity 

(ODBC) to feed raw data from external measurement 

systems into the database engine.9 These external 

measurement systems and the use of ODBC connectors 

are explained in more detail in the next section on the 

development of the DCS. 

Another consideration when designing similar big data 

management systems for small satellite engines is the 

selection of back-end services. For the DCS, the 

Microsoft Windows Server platform was selected as the 

foundation for the system due to organizational and 

institutional requirements. Subsequently, Windows-

integrated services such as IIS, Task Scheduler, and VSS 

Backup were selected. Depending on the different 

application environments for other projects or future 

small satellite missions, the best option is to select 

services that are as tightly integrated as possible with the 

desired operating system platform for the project. 

Database engine selection depends on the application 

and the data set. In the case of the DCS, both the MySQL 

and the MSSQL database engines were implemented due 

to the variability and continuous growth in the data set. 

MySQL works great for development environments and 

the storage of small data files. MSSQL works great for 

large production environments and the storage of large 

data files or filesystems. For small satellite missions, 

data sets are mostly textual and usually include smaller 

data files due to bandwidth and access limitations. 

Therefore, MySQL is likely a better database engine 

choice for small satellite missions, but of course this 

highly dependent on the datasets being stored. 

Furthermore, data packaging and transferability is a 

major consideration in data management system 

architectural design, especially for projects like small 

satellite missions where data is packaged and moved 

around frequently. One requirement of the DCS is to 

facilitate frequent data packaging and transfer between 

member organizations. As a result, the DCS is designed 

to store both textual data and data files within the 

database itself. In other applications where the data set is 

static, data files are typically stored in a separate location 

and are referenced within the database as paths.  

The alternative storage method employed by the DCS 

ensures that all data is stored in the same location and 

eliminates the risk of breaking path links by moving data 

between environments. This data storage method lends 

itself well to projects like small satellite missions where 

data is frequently moved between environments. The 

DCS storage mechanism is described in further detail in 

the next section on the development of the DCS. 

DEVELOPMENT OF THE DCS 

After the design phase of the DCS and the post-impact 

phase workflow, the development phase began. The 

DCS and post-impact phase procedures were developed 

at the same time. As features of the DCS were finalized, 

their corresponding procedures were implemented 

physically in the post-impact phase workflow. 

Front-End Interface 

As in the design of the front-end interface, the 

development of the front-end interface also paralleled 

the development of the physical procedures and 

processes of the post-impact phase workflow. For 

example, the debris fragment DCS workflow shown in 

Figure 3 is derived from the “Extraction” and the 

“Characterization” procedures outlined in Figure 2. 

Bag Individual Debris, 

Label with Location

Asses Debris 

Material, Shape, 

Color, Size

Edit Debris Entry in 

DCS with new 

Assesments

Measure Debris 

Mass and Size

Edit Debris Entry in 

DCS with new 

Measurements

Retrieve a Bagged 

Debris Fragment

Begin Characterization

Extract or Collect 

Debris from Foam

Create New Debris 

Entry in DCS with 

Location Information

Verify Debris

Entry

 

Figure 3: Debris Fragment DCS Workflow 

During the development of the DCS front-end interface, 

procedures like the one shown in Figure 3 guided the 

layout and organization of the various entry, 

modification, and verification pages for debris fragments 

and soft-catch foam panels. For example, the “Add 

Foam” page is used to create a new debris entry in the 

DCS. According to the procedures and processes in 

Figure 2 and Figure 3, only identification and location 

information must be present when a debris fragment or 



Kleespies 5 31st Annual AIAA/USU 

  Conference on Small Satellites 

soft-catch foam panel is added to the DCS. Therefore, 

only the identification and location fields are required to 

submit the “Add Debris” form. Furthermore, the layout 

of the “Add Debris” page, shown in Figure 4, has been 

designed and developed to follow the procedure in 

Figure 3 from the top of the page to the bottom. 

 

Figure 4: Layout of the DCS “Add Debris” Page 

The first two sections of the “Add Debris” page are the 

first two sections utilized by the user during the initial 

debris fragment or soft-catch foam panel entry process. 

The ordering of the rest of the sections correspond to the 

subsequent phases of the debris fragment assessment and 

characterization processes. The same layout process 

applies to the “View Debris”, “Edit Debris”, and “Verify 

Debris” pages as well as the corresponding entry, 

modification, and verification pages for soft-catch foam 

panels. 

Additionally, the forms for each of the front-end 

interface pages are designed to minimize human error. 

The number of regular textual input fields is minimized 

and dropdown selections or checkboxes are used 

wherever possible to ensure some consistency in user 

inputs. Furthermore, the forms for each of the front-end 

interface pages are validated on form submission. For 

example, the HTML pattern attribute is used to restrict 

the input of the “Box #” field to the format “X-##”. If the 

submitted format differs from the specified pattern, the 

user is immediately presented with an error message 

alerting them to the formatting mistake. 

The use of these layout and validation design techniques 

for front-end design helps to maximize user efficiency 

while minimizing human error. This is critical when the 

front-end users have direct access to the recorded data. 

During the development of the DCS front-end interface, 

HTML was used to design the layout of the forms (e.g., 

see Figure 4). JavaScript is used to dynamically change 

form elements to further guide the user through the post-

impact phase workflow. For example, if the user selects 

the “Source” to be “Embedded” the form dynamically 

changes to present fields specific to embedded debris 

fragments. Finally, PHP is used to dynamically fill form 

fields with data from the back-end database engine. For 

example, if a related foam panel is available for a debris 

fragment, a “Foam ID” field is presented using 

JavaScript and filled with a list of existing soft-catch 

foam panels using PHP. 

Back-End Services 

Most of the back-end development on the DCS was done 

on the database engines. As the post-impact phase 

procedures evolved and the front-end interface was 

developed to mirror these procedures, the structure of the 

back-end database engines was modified to reflect new 

data fields and data types. The database engines are 

organized into a tabular structure with separate tables for 

system activity, general system announcements, user 

login credentials, dynamic fields, debris data, and soft-

catch foam panel data. A description of each of these 

tables is presented in Table 2. 

Table 2: DCS Back-End Database Engine Tables 

Table Name Description 

dcs_activity 

Log all actions executed, who executed 

each action, and when each action was 
executed on recorded data. 

dcs_announcements 
Store announcements posted by users 

and administrators of the DCS. 

dcs_debris Store all debris-related data. 

dcs_foam Store all soft-catch foam panel data. 

dcs_colors 
Store a list of selectable color options 

for debris fragments. 

dcs_materials 

Store a list of selectable material 

options and densities for debris 
fragments. 

dcs_shapes 
Store a list of selectable shape options 
for debris fragments. 

dcs_users Store DCS user login credentials. 



Kleespies 6 31st Annual AIAA/USU 

  Conference on Small Satellites 

Dividing groups of data into separate tables as described 

in Table 2 help to keep data organized. Further, using 

tables to store lists of selectable data options enables the 

use of metadata when querying data. For example, a 

debris fragment record in “dcs_debris” might have the 

value “-AL-” stored in its “material” field. Using this 

information, metadata about the material “-AL-“ can be 

queried to find that it represents aluminum and has an 

accepted density of 0.002700 g/mm3.  

Each table has its own set of data fields known as 

columns. Each column has a data type that can range 

from simple textual data usually stored as VARCHARs 

to blocks of binary data known as BLOBs. 

As new post-impact phase procedures were developed 

and external measurement systems such as a 2D imaging 

system were introduced, a storage mechanism for the 

high-resolution images and data files produced by these 

systems needed to be developed. Initially, a series of 

textual columns were added to the “dcs_debris” and 

“dcs_foam” tables to store paths to these high-resolution 

images and files, which were stored externally on a 

server. However, it was clear that if the connection to this 

server was interrupted or if a file or folder was renamed, 

moved, or deleted, the paths stored in the database 

engine would be broken and the association of those 

images and data files to the original debris fragment 

record would be lost. The need to package and transfer 

the data set between members of the project compounded 

this risk of losing data associations. In response, a new 

solution was developed where images and files are stored 

directly in the database engine with the rest of the textual 

data for each debris fragment and soft-catch foam panel 

record. 

Storing images and files directly in a database engine, 

like any new feature, has benefits and drawbacks. 

Storing directly in the database engine dramatically 

increases the querying capability of the data set. For 

example, a research can query the back-end database 

engine to return the raw measurement images for all 

debris fragments within a specified mass range with a 

single line of SQL. However, complex queries executed 

on the entire data set that involve the selection of these 

images incurs serious performance losses. Thus, careful 

querying and scripting is required when working with a 

design in which images and files are stored directly in a 

database engine to avoid these performance pitfalls. 

Ultimately, the need to package the data set frequently 

and the significance placed on maintaining record 

associations outweighs the performance impacts of 

querying the entire data set and the caution required 

when executing queries. Further, the sizes of the images 

and data files for debris fragments and soft-catch foam 

panels are small enough that the query performance 

when querying a single record is acceptable. More 

details on the performance of the MySQL database 

engine when using direct BLOB storage for images and 

files are presented in the section on the performance of 

the DCS. 

Another major consideration in the development of the 

DCS back-end layer was the compatibility with external 

data sources and systems. Recently, three external 

measurement systems have been introduced into the 

post-impact phase workflow: a mass measurement 

system, a 2D imaging measurement system, and a 3D 

imaging measurement system.10 These external 

measurement systems are MATLAB-based and have 

been designed to use an ODBC connector to interface 

directly with the DCS back-end layer. An example of the 

interfacing for the 2D imaging measurement system is 

shown in Figure 5. 

  D  Imaging 

System Graphical 

User Interface 

(GUI)

Arduino
  D  Imaging 

PowerShot 

Camera

ODBC

Conn.

DCS Back-End Layer

MySQL DB Engine

  D  Imaging 

Lighting Rig

AutoHotKey

Scripts

Network Storage

 

Figure 5: Overview of the Interfacing of the 2D 

Imaging External Measurement System 

The DCS back-end layer was designed to treat external 

input from these measurement systems like a 

modification action performed by a user on the front-end 

interface. That is, a new revision for the associated debris 

fragment is created, the identification, location, and all 

other data from the previous revision is filled, and the 

new measurements from the measurement system are 

updated in the new revision. 

The external measurements systems are used to further 

minimize human error that may be introduced during 

measurement or data entry on the front-end interface. 

Each of the external measurement systems utilize a 

guided graphical user interface to abstract out the 



Kleespies 7 31st Annual AIAA/USU 

  Conference on Small Satellites 

measurement and calculation process from the user. To 

use the external measurement systems, a user simply 

places a debris fragment on the measurement area and 

the rest of the measurement process is automated. 

However, the data produced by these measurement 

systems is formatted and handles by the back-end in the 

same manner data entered on the front-end interface is. 

This is important to ensure consistency across the data, 

maintain record associations, and secure the revision 

history and chain of custody for each debris fragment. 

Future Development 

Development continues on the DCS front-end interface 

and back-end services. As new procedures and data types 

are introduced into the post-impact phase workflow, the 

DCS must evolve to support these new processes and 

fields. The DCS was designed modularly to enable a 

smooth evolution process that accounts for inevitable 

changes in the data set structure. For example, the 

foundational form used on the each of the DCS debris 

and foam pages can be modified in a single HTML file 

that applies to all other source files that reference it, use 

it for data entry, or use it for data display. Similarly, 

small satellite missions can benefit from similarly robust 

systems that adapt to changing mission parameters, data 

types, available downlink and telemetry, etc. 

DEVELOPING FOR SMALLSAT MISSIONS 

The DCS and the DebriSat post-impact effort have 

benefitted greatly from the parallel development of the 

DCS and the post-impact phase workflow. Future small 

satellite missions with similar big data challenges could 

equally benefit from designing and developing their 

ground station data management software in parallel 

with design and development of the mission. The ability 

to test various features of the DCS and how they might 

work with proposed post-impact phase procedures or 

systems was invaluable in making better design 

decisions for the project. Similarly, for small satellite 

missions, being able to test ground-based data 

management while features in flight software or 

hardware are being implemented will lead to a more 

cohesive and synergistic design in the end. 

Small satellite missions would likely benefit from first 

designing the structure of a back-end database engine 

first. This design should be based on the data types 

expected from telemetry and downlink. Further, if the 

spacecraft and data management system are designed 

synchronously, this structural design can be easily 

modified to match changes made during the 

development of the spacecraft’s telemetry and downlink 

formats. Additionally, the interfacing between the back-

end layer of the data management system and external 

data sources such as a ground station TNC or SDR 

should be decided upon early in the design and 

development process. 

Once a good foundation for the back-end layer has been 

developed, development should begin on the front-end 

layer. Likely, future small satellite missions will be 

concerned more with the display and manipulation of 

data than with the entry of data. However, the use of form 

validation and clever design to present inputs and outputs 

in a logical manner improves the user efficiency when 

interacting with data and ensures the integrity of the 

underlying data set. 

Developing a robust, modular architecture will enable a 

smooth evolution and extension process of the data 

management system in the future. Furthermore, 

considering the design of the back-end database engine 

structure early on allows designers and developers to 

establish good record associations and implement 

optimization features such as pre-defined list tables like 

“dcs_materials” or “dcs_colors” shown in Table 2 to 

leverage metadata to increase the querying power of the 

data set. 

PERFORMANCE OF THE DCS 

Finally, the performance of the DCS was evaluated to 

determine the viability of storing images and files 

directly in the database engine and to identify the cases 

where performance may be an issue. Ideally, this 

performance analysis can be used by future data 

management systems design to assist in the selection of 

a database engine and whether or not to store images and 

files directly in the database engine. This performance 

analysis was conducted using only the MySQL database 

engine. In the future, another performance analysis will 

be conducted with the MSSQL database engine. 

To determine the performance of the MySQL 

implementation of the DCS database engine, the 

PHPMyAdmin web-based database management 

interface was used. PHPMyAdmin allows the execution 

of custom SQL scripts and returns a total execution time 

for each query. This execution time is the primary metric 

used to evaluate performance. A screenshot of the 

PHPMyAdmin interface is shown in Figure 7 and an 

example of an executed query with total execution time 

is shown in Figure 6. 

 

Figure 6: Example of Query and Execution Time 



Kleespies 8 31st Annual AIAA/USU 

  Conference on Small Satellites 

 

Figure 7: Screencap of PHPMyAdmin Interface 

The specifications for the server on which the DCS is 

hosted and this performance analysis was conducted are 

presented in Table 3. 

Table 3: DCS Server Specifications 

Specification Value 

Operating 
System 

Microsoft Windows Server 2016 

Processor 
(CPU) 

12-Core Intel Xeon CPU E5-2620 @ 2.10 GHz 

Memory 
(RAM) 

32 GB DDR3L 1600 MHz 

An example image produced by the 3D imaging 

measurement system, shown in Figure 8, was used as the 

test image for uploading to and querying the database 

engine. The size of the image file is 2 MB, which is the 

largest image produced when measuring the item shown 

in the figure. 

 

Figure 8: Test Image from 3D Imaging System 

The test image in Figure 8 was uploaded as a BLOB to 

the database engine using a MATLAB script and the 

ODBC connector used by the mass and imaging external 

measurement systems. For the first test, the test image 

was uploaded to a single image field on the database 

engine and the total MATLAB script execution time was 

recorded. For the second test, the test image was 

uploaded to 126 image fields on the database engine to 

simulate a full 3D imaging system entry. The results of 

the first two tests are presented in Table 4. 

Table 4: Results of Upload Tests 

ID Test Execution Time 

1 Single Image BLOB 2.09 s 

2 126 Image BLOBs 261.67 s 

For the third test, a SELECT query was executed on all 

current DCS data (approximately 120,000 rows) without 

any image fields populated. For the fourth test, the same 

query was executed with all 126 image fields populated 

on a single row of the data set. For the fifth test, the same 

query was executed with all 126 image fields populated 

on five rows of the data set. For the sixth test, the same 

SELECT query was modified to select all fields except 

the image fields for all DCS rows, with the first five rows 

of the data set populated with all 126 images. The results 

of these full database selection tests are presented in 

Table 5. 

Table 5: Results of Full Selection Tests 

ID Test Execution Time 

3 No Image Fields Populated 0.01 s 

4 
One Row with all 126 Image 
Fields Populated 

14.69 s 

5 
Five Rows with all 126 Image 
Fields Populated  

N/A – Server Timeout 

6 
Five Rows with all 126 Image 

Fields Populated, Only Textual 
Data Selected 

0.09 s 

For the seventh test, the first five rows of the DCS data 

set are selected with no image fields populated. For the 

eighth test, the first five rows of the DCS data set are 

selected with all 126 image fields populated. For the 

ninth test, all the fields except the image fields of the first 

five rows of the DCS data set are selected, with all 126 

image fields populated. The results of these tests are 

presented in Table 6. 

Table 6: Results of Row 1-5 Selection Tests 

ID Test Execution Time 

7 No Image Fields Populated 0.01 s 

8 All 126 Image Fields Populated 53.63 s 

9 
All 126 Image Fields Populated, 
Only Textual Data Selected 

0.01 s 



Kleespies 9 31st Annual AIAA/USU 

  Conference on Small Satellites 

For the tenth test, only the image fields for a single row 

of the DCS data set with all 126 image fields populated 

is selected. For the eleventh test, only the image fields 

for five rows of the DCS data set with all 126 image 

fields populated are selected. Finally, for the twelfth test, 

a single image from one row of the DCS data set with all 

126 image fields populated is selected. The results of 

these tests are presented in Table 7. 

Table 7: Results from Image Field Selection 

ID Test Execution Time 

10 
One Row with all 126 Image 
Fields Populated 

16.41 s 

11 
Five Rows with all 126 Image 
Fields Populated 

52.64 s 

12 
One Image from One Row with 

All 126 Image Fields Populated 
0.17 s 

The following conclusions can be drawn from the results 

presented of this performance analysis: 

• Querying the database by selecting rows that 

include image columns populated with image 

BLOBs causes a large performance impact 

when the queries are sufficiently large. 

• Queries can be written to avoid selecting 

columns populated with image BLOBs to avoid 

the performance impacts. 

• Most likely, if a large number of images need 

to be queried, they will need to be dumped 

through the back-end database engine console. 

It is clear that when storing images or files directly in a 

database engine, queries must be written more carefully 

to avoid selecting or accessing columns with large 

BLOB data unnecessarily. Furthermore, the database 

engine console or some other connecter must be used to 

dump large amounts of data. The PHPMyAdmin web 

interface times out if a query takes too long to execute. 

Therefore, either the timeout of the web interface must 

be increased or large queries should be executed through 

a back-end connector. 

CONCLUSION 

The DebriSat Debris Categorization System (DCS) is 

well suited for large big data management challenges 

like the ones posed by the DebriSat experiment and 

potential future small satellite missions. The DCS is 

designed with a front-end user interface and a suite of 

back-end services such as a database engine and backup 

mechanism. This front-end – back-end dichotomy works 

well for applications like DebriSat’s or future small 

satellite missions with large data sets where data needs 

to be stored and accessible via a back-end channel but 

also presented in a controlled manner to end users. 

Database engine selection on the back-end layer is a 

critical decision in the design of a big data management 

system and is dependent on the desired application. The 

MySQL database engine works well for development 

and small-scale applications while the MSSQL database 

engine is well suited for large, enterprise environments. 

The parallel development of the DCS with the DebriSat 

post-impact phase workflow enabled a high level of 

synergy between the design of the DCS and the physical 

characterization procedures implemented for the post-

impact effort. Future small satellite missions with similar 

big data challenges should try to achieve this parallel 

design and development as much as possible as it 

produces a more efficient and better suited final product. 

Data storage method is another critical decision to make 

when designing and developing a big data management 

system. For applications where data is very mobile and 

must be packaged often, storing small images and files 

directly within a database engine as BLOBs works well. 

However, there is a significant performance impact if 

queries are not constructed carefully. 

In conclusion, the DCS serves as an example of how a 

large and varied data set like DebriSat’s can be managed 

and leveraged to maximize efficiency and minimize 

error. Ideally, some of the pitfalls and insights 

discovered during the design and development of the 

DCS can be used by future projects and, perhaps, small 

satellite missions to produce similar big data solutions. 

ACKNOWLEDGEMENTS 

The DebriSat project is funded by the National 

Aeronautics and Space Administration (NASA) and the 

United States Air Force/Space and Missile Systems 

Center (USAF/SMC). The DebriSat team would like to 

express their sincere gratitude to NASA and the 

USAF/SMC for their contributions. 

REFERENCES  

1. J. C. Liou, N. Fitz-Coy, S. Clark, M. Werremeyer, 

T. Huynh, M. Sorge, M. Voelker, and O. J. 

Debrisat - a planned laboratory based satellite 

impact experiment for breakup fragment 

characterization. In L. Ouwehand, editor, Sixth 

European Conference on Space Debris. ESA 

Communications, August 2013a. ISBN 978-92-

9221-287-2. 

2. Rivero, M., Kleespies, J., Patankar, K., Fitz-Coy, 

N., Liou, J.-C., Sorge, M., Huynh, T., Opiela, J., 

Cowardin, H., and Krisko, P., "Characterization of 

Debris from the DebriSat Hypervelocity Test," 

Proceedings of the 66th International 

Astronautical Congress, IAC-15-A6.2.9x30343, 

Jerusalem, Israel, October 2015. 



Kleespies 10 31st Annual AIAA/USU 

  Conference on Small Satellites 

3. J. Kleespies and N. Fitz-Coy, "Big impacts and big 

data: Addressing the challenges of managing 

DebriSat's characterization data," 2016 IEEE 

Aerospace Conference, Big Sky, MT, 2016, pp. 1-

9. doi: 10.1109/AERO.2016.7500889 

4. "Home : The Official Microsoft IIS Site", Iis.net, 

2017. [Online]. Available: https://www.iis.net/. 

5. "MySQL", Mysql.com, 2017. [Online]. Available: 

https://www.mysql.com/. 

6. "SQL Server 2016 | Microsoft", Microsoft SQL 

Server - US (English), 2017. [Online]. Available: 

https://www.microsoft.com/en-us/sql-server/sql-

server-2016. 

7. phpMyAdmin, "phpMyAdmin", phpMyAdmin, 

2017. [Online]. Available: https://www.phpmya 

dmin.net/. 

8. "FILESTREAM (SQL Server)", 

Docs.microsoft.com, 2017. [Online]. Available: 

https://docs.microsoft.com/en-us/sql/relational-

databases/blob/filestream-sql-server. 

9. "Microsoft Open Database Connectivity 

(ODBC)", Docs.microsoft.com, 2017. [Online]. 

Available: https://docs.microsoft.com/en-

us/sql/odbc/microsoft-open-database-

connectivity-odbc. 

10. Moraguez, M., Patankar, K., Fitz-Coy, N., Liou, 

J.C., Sorge, M., Cowardin, H., Opiela, J. and 

Krisko, P.H., 2015. An Imaging System for 

Automated Characteristic Length Measurement of 

Debrisat Fragments. 


