
Robust Sampling-Based Trajectory Tracking
for Autonomous Vehicles

Aneesh Sharma
Email: as10ac@my.fsu.edu

Camilo Ordonez
Email: co04d@my.fsu.edu

Center for Intelligent Systems, Controls and Robotics (CISCOR)
Department of Mechanical Engineering

Florida A&M University-Florida State University
Tallahassee, Fl 32310

Emmanuel G. Collins, Jr
Email: ecollins@eng.fsu.edu

Abstract—In real world motion planning tasks, autonomous
vehicles can easily deviate away from their planned trajecto-
ries due to external disturbances, uncertain wheel/leg-terrain
interaction, and other errors in the model used for planning.
A possible solution to this problem consists in the continuous
usage of replanning strategies. However, replanning is in general
computationally intensive and its use should be minimized when
possible. In this paper, a new methodology for robust trajectory
tracking is proposed. The method generates, via sampling, cor-
recting control inputs to drive the vehicle back to the desired
trajectory. Due to the use of sampling, the methodology easily
incorporates nonlinear planning models and integrates seamlessly
with sampling-based motion planners. The paper presents simu-
lation and preliminary experimental results showing the efficacy
of the proposed approach and thus its potential application to
motion planning tasks with real-time constraints.

I. INTRODUCTION

One of the core problems in autonomous vehicle mobility is
the integration of motion planning and control [1]. Motion
planning refers to finding a collision free trajectory in space
for a given task, while control aims to ensure that the vehicle
follows the planned trajectory. In a simplistic open loop strat-
egy, a vehicle model is used to compute a trajectory and the
corresponding control sequence that will result in the vehicle
moving from the start state to the goal state. The vehicle is then
commanded with the control sequence and if the model has
high fidelity, the vehicle will move in the desired trajectory.

Of course, in real world applications pose errors appear due
to model errors and the vehicle will not generally move in the
desired trajectory when commanded with the original control
sequence. Excessive error can lead to unsafe operation, or even
loss of control in cases of limited actuation [2]. Even small
intermediate pose errors, if not corrected promptly, can result
in a large error in the vehicle’s final pose. There are various
factors which can cause deviation from the planned trajectory
such as slippage, uncertain wheel/leg-terrain interaction, actu-
ator limitations, and other errors or omissions in the planning
model. As a result, the reference trajectory becomes invalid
because the planned control inputs are no longer capable of
taking the vehicle to the desired goal.

Conventional motion planning approaches [3], [4], [5],
[6] require two disconnected steps to solve this problem: 1)
plan a vehicle trajectory, and 2) develop trajectory following
controllers. The feedback laws of element 2 are in general

complicated, particularly when the system is governed by
nonlinear models. Another possible solution to this problem is
to replan whenever the vehicle deviates from its trajectory [7],
[8], [9]. One particular advantage of using the latter strategy
is that it results in close to optimal trajectories from the
vehicle’s current state to the goal state. While the replanning
approaches of [7], [8], [9] address environmental uncertainty
due to obstacles, these approaches do not address the issue
of uncertainty in the vehicle’s position. If a new trajectory is
replanned from the current position to the goal position each
time the vehicle deviates from its reference trajectory, then the
motion planning task becomes computationally very intensive
for many unstructured real-world scenarios. A preferred solu-
tion would then be to merge onto the existing trajectory in a
close to optimal manner.

In this paper we describe a sampling-based algorithm that
robustly tracks planed trajectories while optimizing conven-
tional measures of performance such as execution time, length
of path, or energy. The algorithm’s key features are its low
computational requirements, its ability to work with nonlinear
models, and its seamless integration with sampling-based
motion planners. The remainder of the paper is structured
as follow. Section II provides background for the employed
motion planner. Section III details the main steps of the
proposed algorithm. Section IV presents simulation results.
Section V provides experimental results. Finally, Section VI
provides conclusions and future work.

II. BACKGROUND

This section briefly discusses the sampling-based motion
planner utilized in this research to generate the baseline
trajectory for the autonomous vehicle to follow.

Sampling Based Model Predictive Optimization (SBMPO)
[10],[11] may be classified as a randomized A* algorithm
that samples exclusively in the input space of the discrete-
time model that it integrates; this paradigm is compatible with
the input-centric viewpoint of Model Predictive Control [12].
The core optimization is that of the LPA* (Lifelong Planning
A*) graph search algorithm and hence, under the conditions
that an implicit grid is used for the entire state vector of
SBMPOs integration model, SBMPO shares the powerful
completeness properties of LPA* [8]. This result is akin to
MPC stability results based on enforcement of a terminal

Fig. 1. Illustration of a tree resulting from the SBMPO sampling process.

constraint [12]. To achieve efficient computations, SBMPO
utilizes enhanced kinematic models as the integration model
and extracts constraints from the vehicle’s dynamic model
[10], [13], [14]. SBMPO, as do all A* algorithms, requires
an optimistic heuristic, which despite its name is actually a
rigorous lower bound on the cost from the current state to the
goal state. If properly chosen, SBMPO is computationally fast.

The following are the main steps of SBMPO:

1) Select a node with highest priority in the queue: The
nodes are collected in an Open List, which ranks the
potential expansion by their priority or low cost asso-
ciated with the node. The Open List is implemented
as a heap so that the highest priority node that has
not been expanded is on top. If the selected node is
the goal, SBMPO terminates, otherwise go to step 2.
Note that the node representing the start will have the
highest initial priority.

2) Sample the input space: Generate a sample of the
input to the system that satisfies the input constraints.
The input sample and current state (i.e., the state of
the selected node) are passed to the system model,
and the system model is integrated to determine the
next state of the system. If the next state satisfies all
constraints, then continue to Step 3, else repeat Step
2.

3) Add a new node to the graph: Use an implicit grid
([15]) to check if the graph already contains a node
close to the new state of the system. If such a node
exists, only add an edge from the current node (i.e.,
the selected node) to the node whose state is similar
to the new state. Otherwise, add a node whose state
is the next state.

4) Evaluate the new node cost: Use an A* heuristic
to evaluate the cost of the generated vertices based
on the desired objective (which is least amount of
energy). Add a new node to the priority queue based
on the minimum cost.

5) Repeat 2 − 4 for n successors: Repeat steps 2 − 4
for n successors, where n, the branchout factor, is

defined by the user.
6) Repeat 1−5 until one of the stopping criteria is true:

Steps 1−5 are repeated until the goal is reached or the
maximum number of allowable iterations is achieved.

III. ROBUST TRAJECTORY TRACKING

Fig. 2. The proposed approach to trajectory merging. Linearization is used
to compute a corrective input δuk . Samples about uk + δuk are then input to
the nonlinear model. A state, denoted by x, is represented by a circle and a
control input, denoted by u, is represented as an edge connecting two states.

Let us assume that as as depicted in Fig. 2, a vehicle
trajectory has been planned, but during execution the vehicle
realizes that it has diverged from the desired trajectory. In
addition, we can assume that the vehicle motion is governed
by a general nonlinear model

xk+1 = f(xk, uk), (1)

where xk represents the system state and uk the control input.
The sampling-based planning algorithm described in Section
II generates vehicle trajectories by sampling the control inputs
uk. Here, along the same lines, it is proposed that correcting
control inputs are generated to drive the vehicle back to the
desired trajectory.

The proposed approach relies on linearization of the system
around the current state to generate an initial (rough) estimate
of a corrective perturbation δuk of the planned control input
uk. Referring to Fig. 2, if the control input corresponding to
the nearest neighbor to the actual state of the vehicle were
applied, the vehicle state would change as

x
′

k+1 = f(xk, uk) ≈ Axk +Buk, (2)

where A and B are respectively the corresponding system and
input matrices of the system obtained through linearization of
(1). Alternatively, if a control input uk+δuk were applied, the
system would evolve as

xdk+1 ≈ Axk +B(uk + δuk). (3)

Therefore, if we define δx = xdk+1−x
′

k+1 , the required control
perturbation δuk to drive the vehicle back to the trajectory can
be chosen as the least squares solution (δuk) to

Bδuk = δx. (4)

SBMPO then samples around uk + δuk and inputs these
samples to the full nonlinear model, making the approach a
nonlinear one, despite the initial linearization.

To compensate for a pose deviation, the proposed method-
ology first finds a point of entry (nodepoe) on the reference
trajectory. This point, as the name suggests, is a node on
the reference trajectory where the vehicle attempts to merge.
Ideally this node lies somewhere between vehicle’s expected
position (nodee) and the goal (nodegoal). If it is too close to
nodee, then the vehicle will have to make very sharp turns,
which is highly inefficient because sharp turns introduce more
slip-related errors and can consume excessive energy [16],
[17], [18]. Secondly, if the point is too close to nodegoal, then
there is a high probability that the vehicle may never merge
on to the reference trajectory. This can result in significant
increase in execution time if the goal is far away from vehicle’s
current position.

Fig. 3. Sample curvilinear trajectory. The point nodee represents the node
where vehicle was expected to be and nodecurr is the vehicle’s current node

Referring to Fig. 3, a distance (di) between the vehicle’s
current position (nodecurr) and the ith node in the reference
trajectory (nodei) is defined as the weighted sum of d1 and
d2,

di = w ∗ d1 + (1− w) ∗ d2, (5)

where w is the weight, and d1, d2 are the Euclidean dis-
tances between (nodecurr, nodei), and (nodei, nodegoal) re-
spectively. As the weight w varies from 0 to 1, nodepoe moves
from nodegoal to nodee with nodepoe = nodegoal at w = 0,
and nodepoe = nodee at w = 1. The ideal point of entry
(nodepoe) is selected as the one with the minimum distance
d = minD, where D = {di}ni=1 and n is the number of nodes
in the reference trajectory.

In order to merge onto the reference trajectory at nodepoe,
(2)-(4) are applied to compute an estimate of a corrective
perturbation δucurr that drives the system towards the desired
node of entry. To compensate for the errors caused by the
linearization process, the proposed approach utilizes Gaussian
sampling around ucurr + δucurr. Sampling gives a more
accurate value to the new control input, and is highly efficient
in scenarios where one or more obstacles are present around
nodecurr.

The planner creates a dynamic directed graph G, which is
a set of all nodes, indicating different sample values of ucurr+
δucurr, and edges currently in the graph. The cost of traversing
from node n

′
to node n ∈ Successor(n

′
)1 is denoted by

c(n
′
, n), where 0 < c(n

′
, n) <∞.

Referring to Fig. 4, the cost between (xk, x
′

k) is given by

Fig. 4. Illustration of sampling around uk+δuk . The point nodee represents
the node where the vehicle was expected to go, nodecurr is the vehicle’s
current node, and nodepoe is the desired node of entry.

g
′
(k), and the cost from (x

′

k+1, x
d
k+1) is denoted by h

′
(k). The

nodes are selected based on their priority, and it is determined
by a two component key vector,

key(v) = (k1(v)
k2(v)

) = (g
′
(v)+h

′
(v)

g′ (v)
),

where 0 ≤ v < (number of nodes), and the keys are ordered
lexicographically with the smaller key values having a higher
priority.

In the proposed methodology, the algorithm looks ahead
and verifies if it is possible to reach the reference trajectory in
less than N steps. If yes, then it proceeds with merging strategy
(Note that for the merging computations a maximum allocated
time TME of the order of microseconds is preassigned.)
Otherwise, a new trajectory needs to be replanned using an
anytime version of SBMPO. The incorporation of the anytime
version of the planner is part of ongoing work. However,
for completeness Fig. 5, provides a schematic of the overall
approach.

IV. SIMULATION RESULTS

In the following simulations a unicycle kinematic model is
assumed, and is given in discrete time by

xk+1 = xk + vk cos(θk+1)T,

yk+1 = yk + vk sin(θk+1)T,

θk+1 = θk + ωkT,

(6)

where (x, y) is the position of the vehicle in the global
coordinate frame of Fig. 6, v is the linear velocity, ω is the

1Successor(n
′
) denotes the set of successors (children) of vertex n

′
εG.

Fig. 5. The proposed approach to robust trajectory tracking with a maximum
allocated time TME for merging, of the order of microseconds. If the merging
fails, the anytime version of SBMPO will replan a new trajectory and optimize
it for the remaining time TRE (fraction of a second).

angular velocity and θ is the vehicle’s orientation with respect
to the X axis. The control inputs of the vehicle are (ω, v), and
the states are sampled with period T . In addition, the selected
cost function is distance; however the approach can easily use
other cost functions such as energy [17] or time [14].

Fig. 6. Coordinate frame used in the simulations. The vehicle ’s linear and
angular velocities are v and ω respectively

In the simulations, SBMPO is used to generate the ref-
erence trajectory. The control inputs from the trajectory are
then given to the vehicle in a sequential manner, which if
executed properly will take the vehicle to the desired goal
state. Figure 7 shows a situation where the vehicle deviates (an
external deviation error at (−0.5, 1.5) was introduced) from the
desired trajectory and the sampling-based merging approach is
not employed. Notice the difference between the reference and
not-corrected trajectories. If the planner replans every time the
vehicle deviates, then a trajectory like the one shown in Fig.
8 is obtained.

However, it is important to recall that replanning is expen-
sive, which is one of the main motivations for the proposed
approach, which intelligently makes a choice between merging
and replanning. Figure 9 shows the trajectory generated by the
algorithm proposed in Section III (computation time = 8ms),
which quickly estimates the new control inputs required to
merge onto the reference trajectory and replans only when it
is necessary, thereby reducing the computation time required to
generate a corrected trajectory. The computation time of the
trajectory merging approach is 0.09ms while time taken by

replanning approach is 5ms. This clearly shows that replanning
can be a computationally expensive choice in some cases.

Fig. 7. Simulation result for simplistic open loop control. The dotted green
line represents the continued deviation from the dashed-dot red reference
trajectory after a perturbation occurs from the desired trajectory

Fig. 8. Simulation result for complete replanning from the perturbed position
using SBMPO. Start′ is the perturbed position from where a new trajectory
is planned to the Goal.

V. EXPERIMENTAL RESULTS

The FAMU-FSU Bot shown in Fig.10 is a skid-steered
vehicle, which employs 2 mechanically coupled Pittman GM
9236 brushed DC motors per side. Each pair of motors is
controlled using a current control approach by a Maxon motor
controller (4-Q-dc). The motor controllers are configured to
provide a maximum current of 5A, which corresponds to a
maximum torque of about 4.35Nm. The range of angular
velocity has been constrained to −0.33rad/s to 0.33rad/s,
with a maximum linear velocity of 0.2m/s. The motion of
the vehicle is tracked using 10 camera Vicon systems.

Fig. 9. Simulation result for the proposed robust trajectory tracking algorithm.
The dotted green line, representing deviation from the dashed-dot red reference
trajectory, converges quickly back to the original trajectory.

Fig. 10. Experimental setup. The task was to command the FAMU-FSU
Bot from the Start position to the Goal position without hitting any of the
obstacles.

In the experiment, SBMPO used the kinematic model (6)
to generate the reference trajectory and the corresponding
control sequence. The vehicle’s position was tracked using
a Vicon camera system. Figure 11 shows an experimental
run with the original control sequence. The computation time
required to generate the reference trajectory was 20ms. The
difference between the experimental trajectory and simulated
trajectory was caused by vehicle slippage. Figure 12 shows a
situation where an error of the order of 0.6m was introduced
manually to the vehicle’s position at (−0.3, 1.7)m and the
sampling-based merging approach was not applied, resulting
in the vehicle colliding with an obstacle. (The vehicle was
stopped by a remote off button once it hit an obstacle.) When
the sampling-based merging approach was used in the same
scenario, the results shown in Figure 13 were obtained. The
computation time of the trajectory merging approach was only
0.1ms.

Fig. 11. Original experimental trajectory. The dashed green line represents the
simulated trajectory and the solid blue line represents the trajectory executed
by the vehicle.

Fig. 12. Trajectory with no correction. The dashed-dot red line represents
the reference trajectory, the dotted blue line the deviation from the reference
trajectory, the solid blue line the trajectory executed by the vehicle, and the
dashed green line the simulated trajectory.

VI. CONCLUSION AND FUTURE WORK

This paper has presented a robust trajectory tracking al-
gorithm for autonomous vehicles. The approach is based on
sampling and therefore can efficiently work with nonlinear
models without the need to resort to complex feedback laws
that are decoupled from the motion planner. In contrast, the
proposed approach seamlessly integrates with sampling-based
motion planners.

Simulation and preliminary experimental results show the
efficiency and efficacy of the approach to drive the vehicle
back to a reference trajectory in the presence of external dis-
turbances. In particular the computation times of the trajectory
merging approach can be well over an order of magnitude
lower than the computation times demanded by complete
replanning.

Fig. 13. Experimental result of SBMPO trajectory tracking algorithm; Dotted
blue line represents deviation from the reference trajectory

Ongoing and future work involves the development and
incorporation of an anytime version of SBMPO, which will
enable the replanning of trajectories on demand when the
pose errors are very large and the merging approach becomes
infeasible. In addition, a detailed experimental validation of
the approach will be conducted on outdoor surfaces. Special
emphasis will be placed on autonomous ground vehicles
moving on very slippery surfaces. Additionally, extensive
simulations will be performed for autonomous rendezvous of
a spacecraft moving in a cluttered environment [13], which
involves a planning problem that relies on direct integration of
an uncertain dynamic model.

ACKNOWLEDGEMENT

This work was supported by the Federal Aviation Admin-
istration under Grant CA 10-C-CST-FSU and by the collab-
orative participation in the Robotics Consortium sponsored
by the U.S. Army Research Laboratory under the Collabo-
rative Technology Alliance Program, Cooperative Agreement
DAAD 19-01-2-0012. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes not
withstanding any copyright notation thereon.

REFERENCES

[1] R. Siegwart, I. Nourbakhsh, and D. Scaramuzza, Introduction to Au-
tonomous Mobile Robots. The MIT Press, 2011.

[2] C. Ordonez, N. Gupta, W. Yu, O. Chuy, and E. Collins, “Modeling
of skid-steered wheeled robotic vehicles on sloped terrains,” in ASME
Dynamics Systems and Control Conference, Ft Lauderdale, Fl, October
2012.

[3] S. Blai, “A novel trajectory-tracking control law for wheeled mobile
robots,” Robotics and Autonomous Sytems, vol. 59, no. 2, pp. 1001–
1007, 2011.

[4] D. Chwa, “Sliding-mode tracking control of nonholonomic wheeled
mobile robots in polar coordinates,” IEEE Transactions on Control
System Technology, vol. 12, no. 4, pp. 637–644, 2004.

[5] B. S. Park, S. J. Yoo, J. B. Park, and Y. H. Choi, “A simple
adaptive control approach for trajectory tracking of electrically driven
nonholonomic mobile robots,” IEEE Transactions on Control System
Technology, vol. 18, no. 5, pp. 1199–1206, 2010.

[6] I. Zohar, A. Ailon, and R. Rabinovici, “Mobile robot characterized by
dynamic and kinematic equations and actuator dynamics: Trajectory
tracking and related application,” Robotics and Autonomous Systems,
vol. 59, no. 6, pp. 343–353, 2011.

[7] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun,
“Anytime dynamic A*: An anytime, replanning algorithm.” in ICAPS,
2005, pp. 262–271.

[8] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*,”
Artificial Intelligence, vol. 155, no. 1, pp. 93–146, 2004.

[9] D. Ferguson and A. Stentz, “Anytime RRTS,” in Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on. IEEE, 2006,
pp. 5369–5375.

[10] O. Chuy, E. Collins, D. Dunlap, and A. Sharma, “Sampling-based
direct trajectory generation using the minimum time cost function,” in
Experimental Robotics, ser. Springer Tracts in Advanced Robotics, J. P.
Desai, G. Dudek, O. Khatib, and V. Kumar, Eds. Springer International
Publishing, 2013, vol. 88, pp. 651–666.

[11] D. Dunlap, C. Caldwell, and E. Collins, “Nonlinear model predictive
control using sampling and goal-directed optimization,” in Proceedings
of the Multi-Conference on Systems and Control, Yokohama, Japan,
September 8-9 2010.

[12] J. Maciejowsky, Predictive Control with Constraints. Prentice Hall,
2002.

[13] G. D. Francis, E. G. Collins Jr, O. Chuy, and A. Sharma, “Sampling-
based trajectory generation for autonomous spacecraft rendezvous and
docking,” 2013.

[14] C. Ordonez, N. Gupta, O. Chuy, and E. Collins, “Momentum based
traversal of mobility challenges for autonomous ground vehicles,” in
IEEE International Conference on Robotics and Automation, Karlsruhe,
Germany, May 6-10 2013.

[15] C. Ericson, Real–Time Collision Detection, D. H. Elberly, Ed. Elsevier,
2005.

[16] W. Yu, E. Collins, and O. Chuy, Dynamic Modeling and Power
Modeling of Robotic Skid-Steered Wheeled Vehicles, Mobile Robots
- Current Trends, Zoran Gacovski (Ed.). InTech, 2011. [Online].
Available: http://www.intechopen.com/books/mobile-robots-current-
trends/dynamic-modeling-and-power-modeling-of-robotic-skid-steered-
wheeled-vehicles

[17] C. Ordonez, N. Gupta, E. G. Collins, J. Clark, and A. M. Johnson,
“Power modeling of the XRL hexapedal robot and its applications
to energy efficient motion planning,” in International Conference on
Climbing and Walking Robots (CLAWAR), July 2012.

[18] O. Chuy, E. Collins, W. Yu, and C. Ordonez, “Power modeling of a skid
steered, wheeled robotic ground vehicle,” in Proceedings of the IEEE
Conference on Robotics and Automation, Kobe, Japan, May 2009, pp.
4118–4123.

