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This paper introduces a methodology for computationally efficient, direct generation
of optimal trajectories for autonomous spacecraft rendezvous using sampling with time or
distance cost functions. The approach utilizes a randomized A* algorithm called Sampling-
Based Model Predictive Optimization (SBMPO) that exclusively samples the input space
and propagates the dynamic model of the system. Appropriately selected heuristics enable
fast computation of trajectories that end in zero relative velocity. Additionally, this paper
presents an implementation of experience-based replanning for the generation of trajecto-
ries in dynamic environments. By referencing prior information in replanning, sufficient
computational efficiency is achieved for the rapid recalculation of solution trajectories when
subjected to observed changes in the planning space. Using a six degree-of-freedom relative
motion spacecraft dynamic model, simulation results are illustrated for the generation of
rendezvous feasible trajectories in cluttered, dynamic environments that adhere to realistic
constraints.

Nomenclature

r Position vector, m
v Velocity vector, m/s
a Acceleration vector, m/s2

ω Angular velocity vector, deg/s
q Rotation quaternion vector
Θ Rotation matrix
Ω Kinematic quaternion matrix
m Mass, kg
J Inertia matrix, kg-m2

u Thrust control input vector, N
τ Torque control input vector, Nm

I. Introduction

As concluded by recent NASA studies and the United State Space Policy, there is a dire need to develop
technologies for the mitigation of orbital space debris.1 Indicative of the present-day unsustainability of the
space junk problem, it was suggested that a minimum of five mitigation missions would be required each year
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– starting in 2015 – to merely maintain the population of orbital debris observed in 2009.2 The increasingly
cluttered state of orbital space poses a threat to the future success of manned and unmanned space flight.

A major hurdle in achieving unmanned technologies for debris mitigation is the development of adequate
trajectory planning methods. Intelligent autonomous navigation requires the generation of trajectories and
control tracking inputs to traverse a route towards a goal. This intelligence is achieved via a planning
algorithm that is, ideally, capable of quickly determining an optimal trajectory and control inputs subject
to defined system constraints.

Partly motivated by the necessity to mitigate the threats associated with the growing presence of space
debris, various autonomous spacecraft missions have been undertaken, including Orbital Express3 and
Spacecraft for the Universal Modification of Orbits/Front-end Robotics Enabling Near-term Demonstra-
tion (SUMO/FREND)4 by DARPA and Demonstration for Autonomous Rendezvous Technology (DART)5

by NASA. Future advancement of autonomous spacecraft navigation requires the development of innovative
planning algorithms capable of generating trajectories in orbit.

With varying degrees of success, several methods have been attempted for solving the spacecraft trajectory
planning problem. These methods are largely representative of the planning techniques already employed for
robotic manipulators and wheeled vehicles. Spanning the various algorithms used for ground-based robots,
mixed integer linear programming (MILP),6,7 mixed integer nonlinear programming (MINLP),8 potential
functions,9 rapidly exploring random trees (RRTs),10,11 and calculus of variations12 have been researched
as possible solutions.

Critically necessary for aerospace work, the implementation of the system dynamic model allows for
explicit consideration of propulsion constraints when planning control inputs. Many of these algorithms are
hampered by an inability to deal with the nonlinear dynamics of the spacecraft and/or a lack of combined
position and orientation planning capabilities. Furthermore, several are incapable of planning in the presence
of obstacles. Only a few report computation times and these times typically prohibit the possibility of using
the methods in real-time.

Within the realm of the more general topic of direct trajectory generation, recent research has led to
approaches that employ optimization and randomly-generated graphs.13,15,16 These methodologies seek to
combine the computational efficiency obtained via graph-based algorithmic optimization and the global ro-
bustness of randomized, sampling-based graph formation. When implemented with A*-type optimization,
random graph methods can incorporate a heuristic function that facilitates rapid computation of optimal
trajectories. Unlike the randomized A* approach,15,16 methods such as RRT*13 do not utilize A* optimiza-
tion and, as a result, do not benefit from the efficiency achieved by using the predictive behavior associated
with an appropriately determined optimistic heuristic.

Sampling Based Model Predictive Optimization (SBMPO)15,16 incorporates sampling and A* optimiza-
tion to generate trajectories. SBMPO has been demonstrated as an effective and efficient trajectory planning
technique for autonomous underwater vehicles (AUVs),18 ground-based mobile robots,19–21 and robotic ma-
nipulators.22 Motivated by the promising results obtained using SBMPO in navigation and planning tasks
for ground-based robots, ongoing SBMPO research is focused on the continued refinement of the algorithm
and application to additional autonomous systems. In this work, the SBMPO algorithm is studied for appli-
cation to autonomous spacecraft rendezvous and docking duties with the ultimate goal of real-time trajectory
planning for orbital vehicles.

The efficiency of SBMPO is closely linked to the development of an appropriate optimistic A* heuristic. In
this paper, two recently developed heuristic functions, that are based on the solutions to the minimum time22

and minimum distance23 control problems, are presented. These heuristics facilitate the rapid computation
of trajectories that terminate with zero relative velocity, which is a requirement for spacecraft rendezvous
trajectory planning. Afforded by the versatility of the planning methodology, a primary contribution of this
paper is the efficient computation of rendezvous trajectories that accommodate real world constraints and
situational limitations.

II. SBMPO Algorithm and Extensions

This section provides a brief description of SBMPO, associated methodologies and extensions, and iden-
tifies the details of the spacecraft rendezvous problem within the context of trajectory generation.
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Algorithm 1 SBMPO Algorithm

1: function Key(s)
2: return [min(g(s), rhs(s)) + h(s),min(g(s), rhs(s))]
3: end function
4: function HeuristicCost(s, vgoal)
5: return minimum time to reach vgoal
6: end function
7: function Initialize()
8: OPEN ← ∅ . OPEN is a priority queue
9: g(vstart), g(vgoal), rhs(vgoal) ← ∞

10: rhs(vstart), h(vgoal) ← 0
11: h(vstart) ← HeuristicCost(vstart, vgoal)
12: OPEN ← OPEN ∪ vstart . prioritize using key(vstart)
13: end function
14: function UpdateState(v)
15: if v 6= vstart then
16: rhs(v) ← minv′∈Pred(s)(g(v′) + cost(v′, s))
17: if v ∈ OPEN and g(v) 6= rhs(v) then
18: OPEN.update(v,Key(v))
19: else if v ∈ OPEN and g(v) = rhs(v) then
20: OPEN ← OPEN − v
21: else if v 6∈ OPEN and g(v) 6= rhs(v) then
22: OPEN ← OPEN ∪ v . prioritize using key(v)
23: end if
24: end if
25: end function
26: function GenerateChildren(u)
27: for controls ∈ Samples(BRANCHOUT ) do
28: state(u′) = RobotModel(state(u), controls)
29: if IsV alid(state(u′) then
30: u′ ← CreateV ertex(state(u′))
31: h(u′) ← HeuristicCost(u′, vgoal)
32: Succ(u) ← Succ(u) ∪ u′
33: end if
34: end for
35: end function
36: function Main()
37: Initialize() . Initializes the algorithm
38: while OPEN.TopKey() < Key(vgoal) or rhs(vgoal) 6= g(vgoal) do
39: u ← OPEN.pop() . Top element of the queue
40: GenerateChildren(u)
41: if g(u) > rhs(u) then
42: g(u) ← rhs(u)
43: for s ∈ Succ(u) do . Iterate over all successors of u
44: UpdateState(s)
45: end for
46: else
47: g(u) ← ∞
48: for s ∈ Succ(u) ∪ {u} do . Iterate over all successors of u including u
49: UpdateState(s)
50: end for
51: end if
52: end while
53: return Trajectory
54: end function
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A. Brief Overview of Sampling-Based Model Predictive Optimization

SBMPO is a sampling-based algorithm that can be used for motion planning with kinematic and dynamic
models. It can plan using a variety of cost functions, including the standard sum of the squared error
cost function that is commonly used in Model Predictive Control (MPC).25 At its inception, SBMPO was
motivated by a desire to utilize sampling and A*-type optimization in lieu of the nonlinear programming
strategies that are commonly employed for optimization in MPC. Use of these techniques provides SBMPO
with the ability to avoid local minima, when present,14 and achieve fast computations when implemented
with properly designed A* heuristics.

Algorithm 1 contains pseudocode that describes SBMPO, which has many of the features of the lifelong-
planning A∗ algorithm (LPA∗).26 For each vertex v, the algorithm maintains h(v), g(v), and rhs(v), where
h(v) represents the cost-to-goal estimate (known in the artificial intelligence literature as the heuristic, g(v)
is the start cost (i.e., the cost of a lowest cost trajectory from vstart to v), and rhs(v) is another estimate of
the start cost. For any vertex v, statusv, the status of the vertex is given by

statusv =

consistent, g(v) = rhs(v)

inconsistent, otherwise
, (1)

where consistent vertices are vertices that have already been explored, while inconsistent vertices are vertices
which need to be explored.

All inconsistent vertices are pushed into priority queue Q in the order of their priority, which is a two-
component key vector {2}. The keys are ordered lexicographically with the smaller key values having a
higher priority. An implicit grid is used by the algorithm to merge the vertices with similar states, thereby
limiting the number of vertices that can exist within any finite region of the state space.

The main function Main() first calls Initialize() to initialize the trajectory-planning problem {2}. Ini-
tialize() sets the initial g-values of the vertices, vstart and vgoal, to infinity and sets their rhs-values to 0
and ∞ respectively. Thus, initially vstart is the only locally inconsistent vertex and is inserted into the
otherwise empty priority queue (Q) with a key calculated according to {1}. The estimate of the cost-to-goal
value of vgoal is set to 0, and the estimate of the cost-to-goal value of vstart is calculated with the help of
Heuristic Cost() {4}.

SBMPO expands vertices by picking up the top vertex in Q {4} until vgoal is locally consistent or the key
of the vertex to expand next is no less than the key of vgoal {3}. The top vertex is expanded by sampling the
input space {26}, typically using Halton sampling27 or random sampling. The number of samples is called
the branchout factor. The input sample (controls) and current state (state(u)) (i.e., state of the selected
vertex u) are passed to the robot model, and the robot model is propagated to determine the new state
(state(u′)) of the system {28}.

The new state state(u′), if valid (i.e. it satisfies all constraints), is then added to the graph {4}. The
graph is expanded with the help of Create V ertex() {30}, which uses an implicit grid28 to check if the graph
already contains a vertex with state close to state(u′). If such a vertex exists, then return the vertex and
add an edge from the current vertex (i.e., the selected vertex) to the vertex whose state is similar to the new
state. Otherwise, return a new vertex u′ whose state is the new state(u′).

The newly expanded vertex u′ is added to the successor list of the selected vertex u {32}. The heuristic
value h(u′) of the new state is calculated by Heuristic Cost() {4}. SBMPO then updates the rhs-value and
key-value of the new vertex as well as their membership in the priority queue if they become locally consistent
or inconsistent with UpdateStates() {14}, and finally calculates a trajectory by repeatedly expanding locally
inconsistent vertices in the order of their priorities.

When deployed with an appropriate heuristic function, SBMPO can compute near-optimal solutions
more rapidly than other graph-based planning algorithms that lack a heuristic for prediction. For example,
Figure 1 shows the results produced by SBMPO and RRT* in a typical path planning scenario for a mobile
robot with a simple kinematic model given by xk+1

yk+1

θk+1

 =

 xk

yk

θk

 +

 vt cos θk+1

vt sin θk+1

vθ

∆T, (2)

where x and y are the vehicle position components, θ is the vehicle heading, and the control inputs vt and
vθ are the vehicle’s forward velocity and rotational velocity, respectively. In this example, both approaches
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Table 1. Performance Comparison of SBMPO and
RRT* Path Planning Using a Simple Kinematic
Model

SBMPO RRT*

Distance (m) 7.39 8.28

Comp. Time (ms) 1.9 50.0

Figure 1. Minimum Distance Paths Computed by
SBMPO and RRT*.

attempt to compute the minimum distance path
from (xstart, ystart) to (xgoal, ygoal) by exploring a
graph that is propagated using the kinematic model
in (2). Qualitatively, the resulting trajectories are
similar, but, as summarized in the performance com-
parison in Table 1, SBMPO managed to generate a
solution more than one order of magnitude faster
than RRT* and, in fact, produced the shorter (i.e.,
lower cost) path. In complicated planning scenar-
ios, this significant discrepancy in computation time
prohibits the use of RRT* and similar approaches.
Evident in the simple planning scenario shown in
this comparison, the use of a heuristic for prediction
facilitates the rapid computation in SBMPO.

B. Cost Functions in SBMPO

In general, SBMPO provides the algorithmic formalism to solve the optimization problem,

min
uk,...,uk+N−1

J , (3)

where J is the cost function, N is the prediction horizon, and optimization is subject to constraints on the
control input uj , and the output from the propagation model yj . Note that when N =∞, the algorithm runs
until the goal configuration is reached. For the examples in this work, the minimum distance and minimum
time optimzation problems are solved using the cost functions summarized in Table 2

Table 2. Typical Cost Function Expressions Used in SBMPO

Cost Function (J) Variable Definitions

Minimum Distance
N−1∑
i=0

dk+i dj : distance from node j to j + 1

Minimum Time
N−1∑
i=0

tk+i tj : time from node j to j + 1

C. Six-DOF Relative Motion Spacecraft Model for Rendezvous

The spacecraft rendezvous and docking work presented in this paper requires the incorporation of the vehicle
dynamic model for full six degree of freedom (DOF) trajectory planning. Shown in control affine form, the
nonlinear dynamic equation describing the relative motion of the spacecraft with respect to the target is

v̇

ṙ

ω̇

q̇

 =


0̃

v̇

−J−1ω × Jω
1
2Ω(ω)q

 +


1
mΘT (q)u(t)

0̃

J−1τ(t)

0̃

 , (4)

where r and v represent the position and velocity of the spacecraft with respect to the target, ω is the angular
velocity in the spacecraft body frame, q is the rotation quaternion vector, ΘT (q) is the transposed rotation
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matrix expressed as a function of q, Ω(ω) is the kinematic quaternion matrix expressed as a function of ω, J
is the inertia matrix, m is the vehicle mass, u(t) is thrust control input vector, τ(t) is the torque control input
vector, and 0̃ is the zero vector. As in the research by McCamish,29 a spacecraft with the characteristics
defined in Table 3 was used in simulation.

Table 3. Spacecraft Characteristics

Parameter Value

Length (L) 1.0 m

Width (W ) 1.0 m

Height (H) 1.0 m

Mass 100.0 kg

Moment of Inertia X 16.67 kg-m2

Moment of Inertia Y 16.67 kg-m2

Moment of Inertia Z 16.67 kg-m2

Number of Thrusters 6

Maximum Thrust Per Axis (ui,max) 1.0 N

Number of Reaction Wheels 3

Rotation Wheel Maximum Torque (τi,max) 0.055 Nm

Essentially, the rendezvous and docking task
may be simplified as a trajectory generation prob-
lem for an autonomous chase spacecraft navigating
relative to a target orbiting body. A successful so-
lution to the problem requires the determination
of the trajectory and control inputs necessary to
achieve motion from an initial position and orienta-
tion to some goal position and orientation. During
the planning from initial to goal configuration, the
algorithm considers obstacles and other spatial re-
strictions, known motion and/or acceleration of the
target, and, in many cases, nonholonomic vehicle
constraints. Also, unlike path generation, the tra-
jectory generation problem involves planning with
conditions placed on the goal ending velocity.

III. Combined Relative Position and Attitude Trajectory Planning Using a
Dynamic Model

Unlike typical mobile robotics applications of A*-type path planning, spacecraft rendezvous trajectory
planning requires additional consideration of motion constraints that are fundamentally dictated by the
nature of spacecraft docking. Specifically, the docking task requires that the spacecraft approach the goal in
a manner that seeks to match the motion of the target and prevents unwanted collision.

SBMPO enables the development of trajectories based on optimizing various physical metrics (e.g., dis-
tance, time, or energy). This versatility depends on the development of an appropriate heuristic used in the
A*-type planner.

In order to facilitate rapid computation of trajectories, SBMPO relies on a heuristic that predicts the
cost-to-goal as nodes are explored by the planner. Enabling the algorithm to efficiently converge to an
optimal solution, the A*-type planner requires an optimistic heuristic that is fairly non-conservative. When
implemented with a näıve or overly-conservative heuristic, A*-type algorithms are computationally inefficient.
Therefore, it is crucial that the heuristic be carefully developed within the context of the planning scenario.

As defined in the previous section, the spacecraft model describes a fully-actuated vehicle with inde-
pendent actuators controlling the six degrees-of-freedom along the body axes. Under this presumption, the
heuristic functions developed in the following sections may be applied to each of the six independent control
inputs (i.e., ux, uy, uz, τx, τy, τz).

A. Development of an Appropriate Minimum Time Heuristic

To enable efficient minimum time planning, an appropriate heuristic was formed using the solution to the
fundamental time optimal control problem. The minimum time control problem can be solved by forming the
Hamiltonian and applying Pontryagin’s Maximum Principle.30 Assuming that the controlled acceleration is
bound by

r̈ = a, −
¯
a ≤ a ≤ ā, (5)

where
¯
a and ā are, respectively, the lower and upper limits for acceleration. The solution of the minimum

time control problem of Bryson30 can be generalized to yield22

t2 − 2vi

¯
a
t =

v2
i + 2(

¯
a+ ā)r

¯
aā

, if r +
vi|vi|

2ā
< 0

t2 +
2vi
ā
t =

v2
i − 2(

¯
a+ ā)r

¯
aā

, if r +
vi|vi|

2
¯
a

> 0.

(6)
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Figure 2. Minimum time control curve.

The minimum time computed using (6) corresponds
to the bang-bang optimal controller shown in Fig-
ure 2, which illustrates switching curves that take
the system to the origin by applying either the min-
imum or maximum control inputs (i.e., a = −

¯
a or

a = ā). Depending on the initial conditions, the sys-
tem uses either the minimum or maximum control
input to take the system to the appropriate switch-
ing curve. For example, if (ri, vi) corresponds to
point p1 in Figure 2, then the control input a = −

¯
a

is applied until the system reaches point p2 on the
switching curve. At p2, the control input is then
switched to a = ā, which drives the system to the
goal where r = v = 0.

To compute the minimum time heuristic, it is necessary to determine the upper and lower bounds on the
translational and angular acceleration. The dynamic model (4) expresses the translational acceleration as a
function of the quaternion vector and the thrust as

a = v̇ =
1

m
ΘT (q)u(t), (7)

where the quaternion vector, q, is the unit vector given by

q =
[
q0 q1 q2 q3

]T
, (8)

and the rotation matrix Θ(q) is given by

Θ(q) =

 (1− 2q2
2 − 2q2

3) 2(q1q3 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) (1− 2q2
1 − 2q2

3) 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) (1− 2q2
1 − 2q2

2)

 . (9)

If the pitch, yaw, and roll are all zero angles, then

q =
[

1 0 0 0
]T

, (10)

causing
Θ(q) = I (11)

and, hence, the bounds on translational acceleration become

− 1

m
ui,max ≤ ai ≤

1

m
ui,max, i = 1, 2, 3. (12)

The process for finding the bounds on angular acceleration follows a similar process beginning with the
relationship from (4),

ω̇ = −J−1ω × Jω + J−1τ(t), (13)

where the elements of ω are the first derivatives of roll, pitch, and yaw, i.e.,

ω =
[
φ̇ θ̇ ψ̇

]T
. (14)

If the vehicle model is symmetrical, such that the inertia matrix J is given by

J = σI, σ > 0, (15)

then it can be shown that
− J−1ω × Jω = 0, (16)
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causing (13) to become
ω̇ = J−1τ(t). (17)

Hence, the bounds on angular acceleration are

− 1

σ
τi,max ≤ ω̇i ≤

1

σ
τi,max, i = 1, 2, 3. (18)

In the spacecraft rendezvous problem, the minimum time heuristic
¯
tf for a node corresponding to 〈r(t+

∆t), v(t + ∆t), Θ(q(t + ∆t)), ω(t + ∆t)〉 is determined by first solving the minimum time problems for
i = 1, 2, 3 given by

r̈i =
1

m
ui, −ui,max ≤ui ≤ ui,max (19)

with the initial conditions

ri(0) = ri(t), ṙi(0) = vi(t) (20)

and the goal conditions

ri(tf,i) = ri,goal, ṙi(tf,i) = 0. (21)

Then, pitch, yaw, and roll are evaluated in the same manner by solving the minimum time problems

φ̈ = − 1

σ
τ1 , −τ1,max ≤ τ1 ≤ τ1,max (22)

θ̈ = − 1

σ
τ2 , −τ2,max ≤ τ2 ≤ τ2,max (23)

ψ̈ = − 1

σ
τ3 , −τ3,max ≤ τ3 ≤ τ3,max (24)

with the initial conditions

φ(0) = φ(t), φ̇(0) = ω1(t) (25)

θ(0) = θ(t), θ̇(0) = ω2(t) (26)

ψ(0) = ψ(t), ψ̇(0) = ω3(t) (27)

and the goal conditions

φ(tf,φ) = φgoal, φ̇(tf,φ) = 0 (28)

θ(tf,θ) = θgoal, θ̇(tf,θ) = 0 (29)

ψ(tf,ψ) = ψgoal, ψ̇(tf,ψ) = 0. (30)

Finally, the minimum time heuristic
¯
tf for the node is computed as

¯
tf = max(

¯
tf,1,

¯
tf,2,

¯
tf,3,

¯
tf,φ,

¯
tf,θ,

¯
tf,ψ). (31)

B. Development of an Appropriate Minimum Distance Heuristic

For minimum distance path-only planning, it is sufficient to use a heuristic that represents the Euclidean
distance between the expanded vertex and the goal. However, when applied in a planner that propagates
the vehicle’s trajectory using the dynamic model, this heuristic leads to a minimum distance trajectory in
which the vehicle accelerates, rather than brakes, as it approaches the goal.

In scenarios such as autonomous rendezvous and docking, where path-only planning is inappropriate, it
is necessary to develop a heuristic that considers the full state of the vehicle throughout the graph expansion
process as the planner develops a trajectory that seeks to match the goal state. For minimum distance
trajectory planning, the heuristic that was developed is based on the fact that the distance to goal r, the
initial velocity v, the final velocity vf , and the acceleration a are related by

v2
f = v2 + 2ar. (32)
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In order to stop at the goal, vf = 0, and the relationship becomes

∆stop = − v
2

2
¯
a
, (33)

where ∆stop is the minimum stopping distance, v is the velocity, and the sampled control thrust u is bounded
by

−m
¯
a ≤ u ≤ mā. (34)

The complete minimum distance rendezvous heuristic23 has three input parameters: the relative position
of the vehicle r, the relative velocity of the vehicle v, and the desired relative position of the vehicle rG.
Shown in Algorithm 2, the return value of the minimum distance rendezvous heuristic, rstop, is the minimum
stopping distance required to reach the goal position at a desired velocity subject to the acceleration bounds
defined within the sampler.

In the event that the vehicle is approaching the goal too fast and will not be able to stop, lines 2-13 of
the algorithm return a minimum stopping distance that requires the vehicle to go past the goal and return.
Lines 14-26 deal with the mirror case in which the vehicle has surpassed the goal.

Algorithm 2 Velocity-Aware Minimum Distance Heuristic

1: function MinDistHeuristic(rgoal, r, v)
2: if r < rgoal then
3: if v < 0 then . headed away from goal

4: ∆stop = |−v
2

ā | . minimum distance required to stop
5: ∆r = 2∆stop + (rgoal − r)
6: else if v ≥ 0 then . headed toward goal or at rest

7: ∆stop = −−v
2

¯
a . minimum distance required to stop

8: if ∆stop > (rgoal − r) then
9: ∆r = 2∆stop − (rgoal − r)

10: else
11: ∆r = rgoal − r
12: end if
13: end if
14: else if r > rgoal then
15: if v ≤ 0 then . headed toward goal or at rest

16: ∆stop = |−v
2

ā | . minimum distance required to stop
17: if ∆stop > (r − rgoal) then
18: ∆r = 2∆stop − (r − rgoal)
19: else
20: ∆r = r − rgoal
21: end if
22: else if v > 0 then . headed away from goal

23: ∆stop = −−v
2

¯
a . minimum distance required to stop

24: ∆r = 2∆stop + (r − rgoal)
25: end if
26: end if
27: return ∆r

28: end function

In the spacecraft rendezvous problem, the minimum distance heuristic ∆f is determined by first using
Algorithm 2 to solve the minimum distance problems for i = 1, 2, 3 given by

∆stop,i = − ṙ2
i

2ai
, −

¯
ai ≤ ai ≤ āi (35)

with the initial conditions

ri(0) = ri(t), ṙi(0) = vi(t), (36)
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the goal conditions

ri(tf ) = ri,goal, ṙi(tf ) = 0, (37)

and the translational acceleration bounds derived in (12). The pitch, yaw, and roll are then evaluated in a
similar manner; Algorithm 2 is again used to solve the minimum distance problems given by

∆stop,φ = −Lφ̇
2

2ω̇1
, − 1

σ
τ1,max ≤ ω̇1 ≤

1

σ
τ1,max (38)

∆stop,θ = −Wθ̇2

2ω̇2
, − 1

σ
τ2,max ≤ ω̇2 ≤

1

σ
τ2,max (39)

∆stop,ψ = −Hψ̇
2

2ω̇3
, − 1

σ
τ3,max ≤ ω̇3 ≤

1

σ
τ3,max (40)

with the initial conditions

φ(0) = φ(t), φ̇(0) = ω1(t) (41)

θ(0) = θ(t), θ̇(0) = ω2(t) (42)

ψ(0) = ψ(t), ψ̇(0) = ω3(t), (43)

the goal conditions

φ(tf ) = φgoal, φ̇(tf ) = 0 (44)

θ(tf ) = θgoal, θ̇(tf ) = 0 (45)

ψ(tf ) = ψgoal, ψ̇(tf ) = 0, (46)

and – recalling from Table 3 – the vehicle length L, width W , and height H. Finally, the minimum distance
heuristic ∆f is computed as

∆f = max(∆f,1,∆f,2,∆f,3,∆f,φ,∆f,θ,∆f,ψ). (47)

C. Development of Momentum-Aware, Imminent Collision Detection

(a) Nodes rejected as collision is detected. (b) Nodes preemptively rejected.

Figure 3. Illustrations of (a) rudimentary collision detection and (b) imminent collision detection.

When planning in cluttered environments, the algorithm requires a collision detection method to reject
vertices that spatially violate obstacles. Typically, obstacle avoidance is achieved by simply eliminating
vertices that result in direct collision. This method of basic collision detection is illustrated in Figure 3(a).

10 of 19

American Institute of Aeronautics and Astronautics



For trajectory planning, rudimentary collision detection does not consider additional constraints placed
on spatially viable vertices in the vicinity of obstacles that are none-the-less invalid for further expansion.
For example, suppose that a vertex is generated that, based on its position, does not collide with an obstacle
but due to the velocity required to achieve the state at that vertex will, when expanded, inevitably only
generate child vertices that are in collision with an obstacle. Eventually, the vertex described would be
ignored, but at the cost of computational performance. Ideally, such a vertex, like the one labeled V2 in
Figure 3(a), would be preemptively rejected for expansion.

To improve performance, a momentum-based imminent collision detection method was developed for
this problem. Utilizing the same relationship necessary for developing the minimum distance heuristic (32),
imminent collision detection is based on the vehicle’s ability to decelerate prior to collision. When used
for collision detection, the maximum viable velocity in the direction of the nearest obstacle, vomax, and the
minimum distance to the nearest obstacle, do, are calculated using the relationship

vomax =
√

2ado. (48)

Using imminent collision detection, the vertices are expanded and rejected as shown in Figure 3(b).

D. Minimum Effective Thrust Command Threshold

As discussed, SBMPO is capable of computing optimal trajectories that adhere to the dynamic constraints
due to the actuation limits. Previously, this capability was discussed in the context of the usage of a
dynamic vehicle model and by enforcing an upper bound on sampled control inputs, but it is also relevant
when incorporating additional actuation constraints.

(a) Thruster deadzone caused by minimum effective thrust
constraint.

(b) Restoration of fine thrust control via a paired thruster
strategy.

Figure 4. Constrained thruster curves corresponding to (a) unpaired and (b) paired thruster usage.

In the spacecraft rendezvous planning scenario, thruster actuation may be constrained by more than
just the maximum directional output (i.e.,

¯
a and ā). Specifically, individual thrusters may have a minimum

command threshold that effectively limits the lower bound of the thruster output.24 When paired with a
thruster in the opposite direction, this constraint produces an actuation curve that resembles the nonlinear
control deadzone shown in Figure 4(a). As a result, it becomes impossible to deliver small thrust outputs
utilizing a single thruster. However, since they are configured as opposing-direction pairs, the thrusters may
maintain control linearity in the deadzone region by working in tandem and thus producing a net small
thrust output that can be seen in Figure 4(b). Clearly, this compromise comes at a significant cost in terms
of fuel consumption but is necessary to preserve fine control. If defining the cost associated with single
thruster usage at a vertex k as

costu(k) = u(k), (49)

then the cost associated with paired usage of thrusters subject to a minimum effective command constraint
umin becomes

costu(k) =


2umin + u(k) if |u(k)| < umin and u(k) 6= 0,

u(k) if |u(k)| ≥ umin,
0 if |u(k)| = 0,
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where u(k) is the commanded thrust at vertex k and umin is the threshold for minimum effective commanded
thrust. The cost associated with thruster usage, costu(k), is then incorporated as a weighted combinatorial
term in the base cost function, J . For example, to include the thruster cost in the minimum distance
problem, the cost function is modified to become

J =

N−1∑
i=0

dk+i + ηcostu,k+i (50)

where η is a tunable weighting factor on the interval [0, 1].

(a) Unoptimized vehicle trajectory subject to minimum effec-
tive thrust constraint.

(b) Optimized vehicle trajectory using paired thruster strategy
and optimization.

(c) Unoptimized thruster command history. (d) Optimized command history using paired thruster ap-
proach.

Figure 5. Comparison of the minimum distance rendezvous trajectories computed by SBMPO with and
without the paired thruster strategy.

When the minimum effective thrust constraint is applied, a comparison of the unoptimized approach,
shown in Figures 5(a) and 5(c), with the paired thruster strategy (η = 0.05), shown in Figures 5(b) and 5(d),
reveals a smoother, qualitatively-similar trajectory that utilizes fewer low thrust commands. In both cases,
the minimum distance problem is addressed, but when subject to the minimum effective thrust constraint,
umin = 0.3 N, the paired thruster cost function described above delivers a 52.6 percent savings in terms
of net thruster output and is computed in 27.7 milliseconds on a laptop with a 2.4 GHz Intel Core-2 Duo
processor and 16 GB of DDR3 RAM.
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E. Efficient Replanning via Lifelong-Planning A* and Receding Horizon

To accommodate non-deterministic constraints in the trajectory generation task, it is necessary to implement
an efficient replanning strategy that is capable of delivering optimal solutions in situ when encountering
changes in the planning environment. Specifically, when the initial solution trajectory becomes invalid due
to the movement of obstacles in the planning space, the rapid computation of a new trajectory warrants the
use of past planning information, when feasible. Here, this is partially accomplished by utilizing Lifelong-
Planning A* (LPA*) for the graph search process in place of the traditional A* algorithm. LPA* provides a
framework to use previously computed graph information whenever possible and, if necessary, continue the
sampling-based propagation of the graph to produce a new optimal trajectory. A simplified representation
of this process is diagrammed in Figure 6.

(a) Step A: Initially, an optimal solution trajectory is generated
via graph expansion and node connection/removal.

(b) Step B: Progressing toward the goal, movement of the obsta-
cle is observed to violate the initial solution. A new trajectory
is calculated using past graph information and, when necessary,
further expansion.

(c) Step C: Obstacle movement is again detected and, utilizing
past graph information, the optimal trajectory is restored.

Figure 6. Replanning steps.

As anyone forced to encounter a detour when
traveling in an unfamiliar region would attest, the
use of past information is an intuitively obvious
means to speed up replanning. However, in the
case of a complex autonomous planning scenario,
frequent replanning can become computationally ex-
pensive very quickly. In terms of the graph search
process, both the number of vertices maintained in
the planning space and the size of the priority queue
are prone to exponential growth when using past in-
formation in replanning. In order to alleviate this
problem, the concept of receding horizon planning
was implemented alongside LPA* to effectively con-
strain the planning space by seeking only to compute
a trajectory to a subgoal in progress to the final goal
state. In other words, the receding horizon replan-
ning approach delivers the optimal trajectory only
over a defined number of time steps (i.e., travel time
horizon) in pursuit of the goal.

When the horizon is very large, the solution
trajectory will reach the goal if possible, but this
will occur at the cost of additional memory us-
age to accommodate the larger graph and priority
queue. However, when constrained to an appropri-
ate nearby horizon, the replanning process will de-
liver an approximately optimal solution trajectory
after a number of iterations and, in the process,
maintain minimal graph expansion. As identified
in Algorithms 3, 4, and 5, the SBMPO psuedocode
from Algorithm 1 was modified to accommodate re-
ceding horizon planning. Specifically, when generat-
ing the graph space, the modified algorithm assigns
an additional index to each vertex that identifies

Algorithm 3 Modified Initialize Function

1: function Initialize()
2: OPEN ← ∅
3: g(vstart), g(vgoal), rhs(vgoal) ← ∞
4: rhs(vstart), h(vgoal), horiz(vstart) ← 0
5: h(vstart) ← HeuristicCost(vstart, vgoal)
6: horizon ← horizonlim . Define number of

steps to horizon window using horizonlim
7: OPEN ← OPEN ∪ vstart
8: end function

Algorithm 4 Mod. Generate Children Function

1: function GenerateChildren(u)
2: for controls ∈ Samples(BRANCHOUT ) do
3: state(u′) = RobotModel(state(u), controls)
4: if IsV alid(state(u′) then
5: u′ ← CreateV ertex(state(u′))
6: h(u′) ← HeuristicCost(u′, vgoal)
7: Succ(u) ← Succ(u) ∪ u′
8: horiz(u′) ← horiz(u) + 1
9: end if

10: end for
11: end function
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Algorithm 5 Modified SBMPO MAIN Function

1: function Main()
2: Initialize() . Initializes the algorithm
3: while OPEN.TopKey() < Key(vgoal) or rhs(vgoal) 6= g(vgoal) do
4: u ← OPEN.pop() . Top element of the queue
5: if horiz(u) = horizon then . Horizon window reached before goal
6: return Trajectory
7: end if
8: GenerateChildren(u)
9: if g(u) > rhs(u) then

10: g(u) ← rhs(u)
11: for s ∈ Succ(u) do . Iterate over all successors of u
12: UpdateState(s)
13: end for
14: else
15: g(u) ← ∞
16: for s ∈ Succ(u) ∪ {u} do . Iterate over all successors of u including u
17: UpdateState(s)
18: end for
19: end if
20: end while
21: return Trajectory
22: end function

the number of time steps required to reach the associated state (i.e., horizon index). Via the graph expansion
process, the trajectory is computed until either the user-defined horizon limit or the goal has been reached.
In the event that the horizon limit is reached prior to the goal, the algorithm repeats the planning process
using past graph information from the previous iteration until either termination criteria is met.

IV. Simulation Results for Combined Relative Position and Attitude Planning

(a) Minimum distance rendezvous trajectory produced by
SBMPO in an uncluttered environment.

(b) Minimum time rendezvous trajectory produced by
SBMPO in a cluttered environment.

Figure 7. Rendezvous trajectories computed by SBMPO in uncluttered and cluttered environments.

The results presented in this section demonstrate the capability of the planner to rapidly generate six-
DOF trajectories that are appropriate for rendezvous in static and dynamic cluttered environments. As in
Section D these simulations were completed on a laptop with a 2.4 GHz Intel Core-2 Duo processor and 16
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GB of DDR3 RAM.
In each of the simulations, the spacecraft is initially disoriented with respect to the target with Euler

angles of (−45.0◦,−25.0◦, 0.0◦) and is positioned at (−101.0m,−87.5m,−111.2m). In this configuration, the
spacecraft is trailing the target, which, as defined by the system dynamics, is located at the frame origin.
Intending to rendezvous with the target, the goal position and orientation is coincident with the frame origin.

A. Simulation Results in Uncluttered Environment Using Minimum Distance Heuristic

(a) Relative position components. (b) Relative velocity components.

(c) Euler angle components. (d) Angular velocity components.

Figure 8. Parameter profiles of the SBMPO solution for a minimum distance rendezvous trajectory in an
uncluttered environment.

Most evident when deployed in obstacle-free environments, the planner generates minimum distance
trajectories that result in a desired relative position, attitude, and velocity with respect to the target. The
results in this section primarily serve to illustrate the effectiveness of the developed heuristic when used in
conjunction with the SBMPO algorithm to generate rendezvous feasible trajectories. Shown in Figures 7(a)
and 8, simulation results for uncluttered planning correspond to an expected control sequence, where the
vehicle decelerates as it closes in on the goal. When planning in uncluttered space, the minimum distance
solution approximately matches the minimum time solution driven by the bang-bang control sequence and
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is optimal subject to randomized sampling. The rendezvous trajectory, corresponding to a path length of
174.0 meters, was generated in 0.48 seconds.

B. Simulation Results in Cluttered Environment Using Minimum Time Heuristic

(a) Relative position components. (b) Relative velocity components.

(c) Euler angle components. (d) Angular velocity components.

Figure 9. Parameter profiles of the SBMPO solution for a minimum time rendezvous trajectory in a cluttered
environment.

SBMPO is also capable of generating time-optimal, collision-free trajectories when in cluttered environments,
which is desirable for the potential application of the algorithm to orbital debris navigation and removal.
Shown in Figures 7(b) and 9, simulation results of minimum time planning in cluttered environments demon-
strate the capability of SBMPO to generate feasible rendezvous trajectories in the presence of obstacles. In
this simulation, seven randomly-sized and randomly-positioned spherical objects were included as obstacles
impeding the path toward the target. As predicted, the resultant minimum time trajectory corresponds to
the optimal bang-bang control sequence with some expected divergence due to the presence of impeding
obstacles. The collision-free rendezvous trajectory, corresponding to a path length of 179.2 meters, was
generated in 2.23 seconds.
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C. Simulation Results in Non-deterministic Environment Using Receding Horizon Replan-
ning

In terms of practical application, it is improbable that an autonomous vehicle will maintain absolutely
perfect a priori information regarding its operating environment. To deal with non-deterministic elements,
replanning is a necessity. Here, an uncharacterized moving obstacle is observed as the vehicle approaches the
goal and spatially violates the initial solution trajectory. As the vehicle progresses, the obstacle continues
to move and, in turn, replanning takes place to efficiently recompute an optimal, dynamically and spatially-
viable solution trajectory.

In Figure 10, minimum time solution trajectories are shown in red for the first six time-steps of the
simulation scenario. The observed position of the moving obstacle at each time-step is superimposed over its
transparent motion profile and the previous solution trajectory is shown in blue. At each step, the moving
obstacle is observed to have moved from its previous location relative to the target, and, for 3 ≤ k ≤ 5, it is
apparent that the obstacle has moved to a position that violates the previously computed solution trajectory.
The planner must compute a new solution trajectory to avoid potential collision at these time-steps.

As derived in Section E, efficient replanning is achieved by utilizing prior graph information whenever
viable. Here, the total computation time to produce collision-free rendezvous trajectories in the presence of
the non-deterministic obstacle is 1.06 seconds when replanning is used in SBMPO. For comparison, it takes
a total of 5.60 seconds to compute solution trajectories when replanning is not incorporated and SBMPO
plans from scratch at each step.

V. Conclusion

This paper has presented a sampling-based approach to six-DOF spacecraft rendezvous trajectory plan-
ning for orbital debris mitigation. The trajectory planning was achieved via Sampling-Based Model Predic-
tive Optimization (SBMPO), a sampling-based algorithm that operates within the system input space.

Facilitating the efficiency of the randomized A* algorithm, this paper presented the construction of two
appropriate, optimistic A* heuristics that are based on the solutions to the minimum distance and minimum
time control problems. These heuristics enable rapid computation of rendezvous trajectories that end in zero
relative velocity.

Considering an obstacle-free planning environment, SBMPO was applied to the spacecraft relative motion
model to determine a rendezvous-feasible, minimum distance trajectory. The presentation of the obstacle-
free simulation in this paper served to demonstrate the effectiveness of the optimistic A* heuristic and as a
comparative baseline.

A necessity when used in orbital debris mitigation missions, SBMPO was demonstrated to be capable
of generating rendezvous trajectories in the presence of known obstacles. By implementing a well-developed
minimum time heuristic, the algorithm rapidly converged to an optimal solution trajectory that accom-
modates the rendezvous scenario. Furthermore, the computational performance, despite the obstacles, was
comparable to that of obstacle-free planning.

When planning in the presence of obstacles, the efficiency of the algorithm was, in part, due to the use of
the imminent collision detection method that is highlighted in Figure 3(b). Although not explicitly presented
in the results, it should be noted that this collision detection method may be most effective when deployed
in scenarios with a high population and/or high density of obstacles because the number of nodes explored
is reduced when imminent collision detection is employed.

Based on the computational speed of the algorithm, this approach is a likely candidate for use in real-time
guidance and navigation. Lending to the viability of future autonomous orbital debris removal missions, the
computationally rapid results shown in this paper indicate the promising potential for the deployment of
SBMPO in autonomous rendezvous and docking problems.

Future work will focus on the implementation of rapid replanning in the algorithm, the identification
of planning issues associated with onboard perception of obstacles, and the development of additional op-
timization metrics, such as minimum fuel consumption. Additionally, future study will investigate unique
planning issues associated with spacecraft rendezvous and docking, such as thruster plume impingement and
accommodating additional environmental constraints.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Minimum time rendezvous trajectories computed using SBMPO with iterative replanning to
accommodate a moving obstacle.
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