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As small satellite constellations become more frequent, questions as to their deployment and orbit maintenance 
becomes more critical. Nanosatellites are often deployed together, do not have the luxury of on-board propulsion, 
and hence must reach their desired orbits by other ‘passive’ means, such as differential drag. The problem is 
compounded by other factors, such as ground station availability and access, as well as changing atmospheric 
densities. We present here the optimal control problem solved (with constant atmospheric densities) for varying 
utility functions such that satellites utilizing differential drag are phased at equal angular distances. During actual 
operations, a simplified scheme might be preferred. As such, a Taylor series approximation method to analyze a 
bang-bang control scheme is formulated and compared with the optimal solution. The final solution is not drastically 
affected by modest varying factors in drag and drag area, but is significantly affected by starting altitude as expected. 
The solution can be extended to any number of satellites, although the solution does suffer from numerical 
degradation the longer it takes the constellation to achieve its final configuration. 
 
Nomenclature 
 
���  Acceleration (km/s2) 
CD   Drag coefficient 
A  Area (m2) 
m  Mass (kg) 
ρ  Atmospheric density (kg/m3) 
v  Velocity (km/s) 
vrel  Relative velocity (km/s) 
v0  Initial velocity (km/s) 
n   Mean motion (rad/s) 
P  Orbital Period (s) 
��  Earth's gravitational parameter  
  (km3/s2) 
a  Orbital radius (km) 
θ  Separation angle (rad) 
θtarget  Target separation angle (rad) 
t  Time (s) 
nsat  Number of satellites  
i  Index number for satellites 
J2  2nd spherical harmonic term 
f  Utility function (rad·s) 
fmax  Maximum utility achievable (rad·s) 
L  Operational orbital lifetime (s)  
�  Non-dimensionalization of time 
�  Non-dimensionalization of velocity  
Θ  Non-dimensionalization of angle 
LEO  Low Earth Orbit 
ISS  International Space Station 
ADCS   Attitude Determination and Control 
  Systems 

AGI  Analytical Graphics, Inc. 
STK  Satellite Tool Kit 
HPOP  High-precision Orbit Propagator 
JB2006  Jacchia-Bowman 2006   
  Atmospheric Model 
SBB   Singular bang-bang 
HBT  Hyperbolic Tangent 
 
 
I. Introduction 
 
The concept of spacecraft orbit control by means of 
differential drag, using attitude maneuvers to change 
the presented drag area, has long been known and 
postulated. Much work has been done in the area of 
formation-keeping and rendezvous [1-3], and 
recently of more than simply 2 spacecraft [4]. Most 
of these methods rely on the linearized Hill equations, 
assuming that the relative distance between satellites 
is small compared to their orbital radii. Further 
incorporations of the J2 effect into these linearized 
dynamics are introduced by Schweighart and 
Sedwick and utilized in multiple spacecraft 
rendezvous [5].  
 
However, with the advent of CubeSat technologies, 
there is a need to launch not just tight clusters of 
nanosatellites that maintain their relative positions, 
but the need to separate them out over time. CubeSats 
in themselves are restricted by power and size, and 
hence often do not have the luxury of onboard 
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propulsion. New developments in Attitude 
Determination and Control Systems (ADCS) have 
allowed for some measure of control in attitude, and 
hence the ability to rotate solar panels in and out of 
the velocity ram direction to control drag area. 
 
Initial studies in the area of deploying multiple Low 
Earth Orbit (LEO) satellites in a constant phased 
configuration about the Earth have been recently 
explored [6,7]. Furthermore Aerospace Corporation 
have performed on-orbit feasibility studies in this 
area and found CubeSats to have the necessary 
capability to utilize drag effects successfully [8].  
 
The orbital maintenance of a multiple CubeSat 
mission can generally be divided into two portions: 
 

1) Acquisition phase: satellites drift relative to 
each other to separate into their nominal 
orbits given time/fuel constraints. 

2) Station-keeping phase: keeping the satellites 
at their nominal locations relative to one 
another given disturbances such as drag, J2, 
etc.  
 

As stated previously, many studies have explored the 
station-keeping phase of missions quite thoroughly. 
However, an optimal control formulation addressing 
the acquisition phase of co-deployed satellites along 
their orbit has not been widespread, but has 
previously been posed [9]. 
 
This paper takes the acquisition problem and 
formulates it in an optimal control setting. The utility 
function can be seen as a combination of the time it 
takes for all satellites to achieve their nominal orbits 
and overall lifetime they must sacrifice to attain their 
final configurations. The utility function also should 
attempt to maximize the remaining operational 
lifetime of a satellite orbit given the above conditions.  
 
An analytic Taylor series formulation of the satellites’ 
motion is employed as a tool for exploratory analysis 
to identify the theoretically optimal control solution 
in a constant (across time and altitude) atmospheric 
density setting under a circular orbit assumption. This 
approach is shown to approximate the actual 
dynamics of the satellites quite closely, and was 
selected for the following motivations: 
  

1) Allows inclusion of atmospheric density 
variability over time (i.e. from atmospheric 
models and historic space weather 
observations), although density is not 
updated when comparing control 
approaches in this paper. 

2) Allows investigation of simple control 
methods such as ‘singular bang-bang’ 
(henceforth referred to as SBB) where each 
satellite is constrained to only one 
‘maximum drag’ maneuver in attempting to 
reach its target orbit phasing. 

3) Fast orbital propagation, which enables 
validation of general fleet activities over 
long durations.  

 
Propagation accuracy degradations are expected, 
along with inaccuracies in atmospheric density 
predictions, but this approach allows quick and 
meaningful comparisons of control strategies and 
gives a general idea of constellation maintenance 
operations. 
 
The paper is organized as follows: Section II 
describes the orbital mechanics involved along with 
the Taylor series formulation. Section III poses the 
optimal control problem as well as the SBB problem, 
and solves each for 3 alternative utility functions. 
Section IV reports the results of numerical 
simulations to assess the inaccuracies of the Taylor 
approach. Finally, conclusions and future work 
prospects are outlined in Section V.  
 
This work was primarily motivated by Planet-Labs' 
Flock 1 mission to launch a constellation of Earth 
observation satellites in 2014. Initial deployment is 
planned from the International Space Station (ISS), 
while future launches are planned to higher altitudes 
[10]. The satellites closely resemble the 3U form 
factor, and will be 3 axis stabilized with two 
deployable solar arrays. A simple attitude maneuver 
allows for a 6:1 area ratio between the maximum and 
nominal drag configurations, allowing the effective 
use of differential drag in low orbits. On-orbit data 
will be collected for verification of this model as well 
as future analysis. Optimal control solutions were 
obtained using Bocop, an optimal control solver. 
Simulations were performed using AGI's Satellite 
ToolKit (STK) and Orekit, which is a low level space 
dynamics library written in Java. 
 
II. Dynamic Model 
 
The use of differential drag to separate satellites is 
not a new concept, as it is known that satellites with 
differing areas will undergo different accelerations as 
described by 
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where ���is the acceleration due to drag, CD the drag 
coefficient, A the exposed cross sectional drag area, 
M the mass, ρ the atmospheric density, and vrel the 
relative velocity of the satellite to the atmosphere.  
 
Due to drag providing a negative acceleration to the 
satellite’s direction of motion, the initial response is 
for the satellite to decelerate, but due to the loss of 
energy and decay in the orbit, the net effect is for the 
satellite to gain velocity (also commonly known as 
the satellite paradox). The satellite’s acceleration in 
the direction of its motion has been found to be the 
same as if the air drag force, reversed, were pushing 
the satellite [11]. This simply alters equation 1 such 
that there is no negative sign. 
 
The mean motion of a satellite in a circular orbit can 
be expressed as 
 

� = ��
� = √���!

"
# = �"

$%
   [2] 

where n is the mean motion, P the orbital period, µE 
Earth's gravitational parameter, a the orbital radius, 
and v the orbital velocity. As can be seen, satellites at 
higher orbits will possess lower velocities and thus 
lower mean motion rates. Hence satellites at lower 
altitudes will drift faster along-track than satellites at 
higher altitudes. We can then simply express the rate 
of angle change between two satellites A and B as 
 

&' = 
(	

� =

�
$%
*��+ − �,+-   [3] 

where & is the separation angle between satellites A 
and B, and vA and vB their respective velocities.  
 

 
Figure 1 Lifetime of a satellite in circular orbit as a 

function of its velocity. Data is modeled from AGI's STK 

lifetime tool, fitted to an exponential curve. 

The orbit phasing of two satellites using differential 
drag starts with both in identical initial orbits and in 
nominal drag configuration. Satellite A transfers to a 
high drag configuration and decelerates, hence 

dropping in altitude. Since A's altitude is now lower 
than that of B, the differing mean motions allows A 
to drift ahead of B. After some drag duration A then 
returns to its nominal drag configuration. At some 
point, B will perform a similar series of maneuvers, 
forcing it to drop in altitude in such a manner that it 
achieves the same final altitude (and therefore mean 
motion) as A, but now separated along-track by the 
specified separation angle.  
 
The general tradeoff in such a scheme is that forcing 
a satellite into a high drag configuration ultimately 
reduces its total orbital lifetime. As orbital lifetime is 
innately tied to altitude, we can then treat altitude as a 
resource that must be conserved. In the case of a 
circular orbit this translate to a function of velocity, 
shown in Figure 1. However, we must at least 
perform some drag maneuver or we will never 
achieve our desired configuration. The objective is 
then to achieve the final configuration while 
optimizing over some utility function that depicts the 
total "usefulness" or value of the satellite (more 
details in section III). 
 
The timing and strength (how much of the available 
area to present into the velocity ram vector) of these 
maneuvers is dictated by a number of factors, but 
most importantly by the atmospheric density. While a 
control algorithm can certainly compensate for these 
errors, the accuracy of future density predictions 
quickly degrades the further ahead of time we 
attempt to predict.  In addition, we may need to 
explore a simpler class of solutions than those 
suggested by the optimal solution. These motivations 
prompt us to develop the Taylor series formulation of 
this problem. 
 
If we integrate equation 1 with respect to v, we get 
 

�*.- = 	 ���/
��!01�2�/�

   [4] 

where v0 is the initial velocity. However, equation 4 
is only true if we hold ρ and A constant. The Taylor 
approximation of equation 4 yields 
 

�34� = �3 51 + 01�828�8
�� ∆.:   [5] 

where we specify the velocity at the next time step as 
a function of values from the previous time step. ∆t is 
the time step that we evaluate over where all values 
such as area and density are held constant. Similarly, 
the approximation for separation angle and its rate of 
change yields 
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&34� = +01
;$� <=�3��3��3

; − =�3��3��3; >∆.� +
5
(
�:3 ∆. + &3	    [6] 

5
(
�:3+1 =
+01
2$� <=�3��3��3

; − =�3��3��3; >∆. +
5
(
�:3       [7] 

The Taylor series approximation is well suited to this 
problem since results show that the change in 
separation angle rate is fairly linear, owing much to 
the small incremental changes in velocity 
experienced by such a small force such as drag. This 
translates to separation angle that is predominantly 
parabolic in profile. In order to illustrate the relative 
accuracy of different approaches, Figure 2 shows the 
difference between a full Orekit simulation with the 
JB2006 atmospheric model [12], the analytical 
solution specified in equation 4, and the Taylor series 
solution with various amounts of atmospheric density 
(constant, updated per time step, and updated with 
exponential atmosphere model fit) in a bang-bang 
control scheme. The time step chosen is one ISS orbit; 
roughly 92.5 minutes. Even at such a large ∆., we see 
the strong resemblance of the Taylor series 
approximation (with density updating) to the full 
simulation.  
 

 
Figure 2 Comparisons of the change of separation angle 

rate between full Orekit simulation with full drag, 

analytical solution, and various Taylor series 

Satellites orbiting at the same altitude in the same 
plane pass through the same regions of space, and are 
acted upon by very similar forces. The rate of change 
of the J2 and solar pressure perturbations is slow 
relative to the mean motion, so we neglect their effect 
on the overall control scheme. Drag forces are minute 
and act on long time scales, so we anticipate that 
good reactionary control can be developed despite 

uncertainties in density, CD, and exposed area. Figure 
2 confirms that the Taylor approach is valid, however 
this paper predominantly focuses on comparing 
control schemes and utility functions, and therefore 
the constant average density assumption is held from 
now onwards. 
 
III. Control Formulation 
 
We can phrase the orbit acquisition problem 
described thus far as an optimal control problem, 
such that we have state equations 
 

�'3 = 1
2
�@
A �=B�B

2     
 

&'3 = �
$%
<�3+ − �34�+ >   [8] 

and that we maximize the total lifetime performance   
 

∑ DE F*&3-G.�H
I JKLMN!�

3O� + *�PQ� − 1-R<.S>F�QT   [9] 

under the drag area constraints 
 
=�3K ≤ =3 ≤ =�QT    [10] 

where f(θi) is the utility function that describes the 
usefulness of the specified degree of separation 
between the i th and (i+1) th

 satellite, tf is the time it 
takes to reach the desired configuration, nsat is the 
total number of satellites, and L(tf) is the useful 
operational orbit lifetime left after the desired 
configuration is attained.  
 
The boundary conditions of this problem are such 
that 
 
*�3-3K3�3Q� = �3K3�3Q�  
*�3-S3KQ� = *�34�-S3KQ� = ⋯ = <�KLMN>S3KQ�  

*&3-3K3�3Q� = 0  

*&3-S3KQ� = &�Q�X��    [11] 

Equation 11 states that all satellites start at the same 
velocity Y3K3�3Q� , that is predefined by their co-
deployment orbit, and end at the same velocity which 
is necessary for their altitudes to be equivalent and 
their mean motions to be synchronized. The 
separation angle hence goes from 0 to the target value 
&�Q�X�� . Note that these conditions imply that the 

initial and final &'3 = 0. 
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The total lifetime performance is divided into the 
acquisition phase, expressed through the summation 
of f(θi), and the station-keeping phase, which assumes 
that the satellites can be maintained at their nominal 
positions relative to one another without much effort. 
We can  alter equation 9 such that we define lifetime 
as an exponential function of final velocity, as shown 
in Figure 1: 
 

∑ DE F*&3-G.�H
I JKLMN!�

3O� +
*�PQ� − 1-Z�[\] 5Z���H8^M�: F�QT  [12] 

This choice allows the total utility to be purely stated 
in terms of the state variables and the problem 
becomes tractable. Note that due to the extreme 
values in densities and the gravitational parameter 
careful non-dimensionalization of the problem is 
required, which is covered in the Appendix. 
 
The choice of utility function f, which describes the 
utility of the separation angle, can take numerous 
forms depending on how we value θ and &'3 . 
Optimally, it should have properties such that  
 
F*0- = 0  

F 5 ��
KLMN

	: = &�Q�X��    [13] 

although the first condition need not be rigorously 
satisfied. The utility function should also ideally be 
continuous, but again that constraint can be dropped 
if necessary. We will consider a few examples: an 
inverted parabolic profile, a linear profile, and a 
hyberbolic tangent profile. Solutions are based upon 
a constant atmospheric density and 5 satellites using 
the Bocop optimal control solver with _�Q�X�� = 20° . 
 

 
(a) 

 
(b) 

 
(c) 

Figure 3 Various objective functions for f(θ) (a) Inverse 

Parabolic Profile (b) Linear Profile (c) HBT Profile 

 

Figure 3 compares the three alternative utility 
functions considered in maximizing the total utility 
function of Equation 9. Each one has a slightly 
different connotation: the inverted parabola (a) 
describes a function of diminishing returns as the 
target value is approached, hence prolonging the drift 
period. The linear profile (b) is a straightforward 
approach where we value separation angle change 
evenly. Both penalize separations greater than the 
targeted value. The Hyperbolic Tangent (henceforth 
referred to as HBT) (c) is an alternative 
representation which does not penalize overshooting 
and is closer to operational reality: small separations 
have very little value, where as when we approach 
our desired separation angle, we again see a 
diminishing return profile.  
 
Optimal Control 
 
The optimal control problem sets no constraints on 
satellite maneuvers, and it is solved here for the three 
alternative utility functions by maximizing total 
utility over the acquisition phase. The resulting 
separation angles for a 5 satellite simulation are 
plotted against time in Figures 4, and the drag 
profiles (drag area vs. time) are given in Figure 5. 
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(a) 

 
(b) 

 
(c) 

Figure 4 Separation Angle vs Time for various utility 

functions (a) Inverse Parabolic (b) Linear (c) HBT 

 
(a) 

 
(b) 

 
(c) 

Figure 5 Drag Profiles vs Time for various utility functions 

(a) Inverse Parabolic (b) Linear (c) HBT. Note: the next 

time step on the above plots would have all satellites at 

nominal drag area 

From Figures 4 and 5 we see the difference in 
solutions depending on our chosen utility function. 
Figure 4 also demonstrates that, for the three utility 
functions, the total time to target phasing is within 
about 10% of each other. The HBT solution has 
satellites essentially "splitting off" from the pack one 
at a time with drag maneuvers, and therefore lends 
itself to a bang-bang type of control. This is 
operationally far simpler than the others, where the 
optimal drag area falls between the nominal and max 
and requires more sophisticated attitude maneuvers 
and finer control. 
 

 
Figure 6 Total utility (Eq. 9) as seen by various profiles.  

Figure 6 shows the total utility (as per Equation 9) of 
the various profiles. It would appear that the inverse 
parabolic profile results in the most total utility, but 
in actuality these values cannot be compared to one 
another as it is based upon an arbitrary 
transformation of the separation angle. However what 
we can compare is the time it takes for the methods to 
reach the targeted orbit phasing. As expected the 
inverse parabolic takes the longest, since coasting 
rapidly adds value at small separations. The linear 
and HBT solutions are closer together, with the HBT 
taking slightly longer due to lingering effects of a 
preference to coast. We can imagine if we had taken 
a parabolic profile, we would penalize the coasting 
phase and hence the optimal solution would push 
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towards a solution that is closer to the minimum time 
solution. These effects are of course magnified with 
the addition of many satellites; the more satellites 
within the constellation, the larger the difference 
between the total utility functions. 
 
Singular Bang-Bang Control 
 
To minimize operational complexity, it
interest to develop an even simpler version of bang
bang control. We impose the following constraint: 
limit each satellite to only perform one 
drag maneuver to achieve its nominal orbit.
is presented with 3 satellites in Figure 7.

Figure 7 Concept of SBB control with 3 satellites

 
The SBB concept is fairly simple: since each satellite 
can only perform one maneuver, it would have to 
ideally inject itself into the correct orbit at the correct 
time. Combined with Taylor equations 6 and 7, and 
using the boundary conditions in equation 11, the 
problem simplifies to be dependent only upon one 
variable: we can either choose t1, the time the initial 
satellite spends in full drag mode, or t
time between satellites 1 and 2. Fixing one of these 
values allows the drift and maximum drag times (t
and ti) to be solved for all satellites. We then perform 
the similar utility transform f (we again use the 
and take the summation of all these values
to integration, to determine total utility
the process for a range of ti, and the solution is 
naturally concave; too much control leads to an 
immediate loss of orbit lifetime whereas too little 
control allows too much drift time, which in turn saps 
away the operational lifetime. The opt
control solution is one in which, again, the 
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towards a solution that is closer to the minimum time 
solution. These effects are of course magnified with 

; the more satellites 
ithin the constellation, the larger the difference 

To minimize operational complexity, it is in our 
interest to develop an even simpler version of bang-
bang control. We impose the following constraint: 
limit each satellite to only perform one maximum 

maneuver to achieve its nominal orbit. The idea 
is presented with 3 satellites in Figure 7. 

 
with 3 satellites 

The SBB concept is fairly simple: since each satellite 
can only perform one maneuver, it would have to 
ideally inject itself into the correct orbit at the correct 
time. Combined with Taylor equations 6 and 7, and 

conditions in equation 11, the 
problem simplifies to be dependent only upon one 

, the time the initial 
satellite spends in full drag mode, or t1drift, the drift 
time between satellites 1 and 2. Fixing one of these 

lows the drift and maximum drag times (tidrift  
) to be solved for all satellites. We then perform 

we again use the HBT), 
and take the summation of all these values, analogous 

, to determine total utility. We repeat 
, and the solution is 

naturally concave; too much control leads to an 
lifetime whereas too little 

control allows too much drift time, which in turn saps 
optimized SBB 

solution is one in which, again, the total 

utility is maximized. The optimized SBB
(using the HBT utility function) is shown in Figure 8.
 
As can be seen in Figure 8, the SBB
optimal control HBT solution, excep
durations for maximum drag are evenly spread out. 
We see that instead of allowing the solution to drift 
towards the desired separation angl
the separation angle to its nominal at a specific time. 
The solution is expectedly sub-optimal
time necessary to achieve nominal takes a few more 
days. The SBB approach simply trades operational 
lifetime for reduced operational complexity.
 

(a) 

(b) 
 

Figure 8 Optimal solution for SBB control (a) Separation 

Angle vs Time (b) Drag Profile vs Time

IV. Simulations 
 
To evaluate these solutions in the presence of higher 
order perturbations, we simulate the orbits using 
Orekit. In addition to the constant density assumption 
(we let this condition hold to exclusively
our current results with additional forces), we add 
spherical harmonics to the 10th order as well as solar 
radiation pressure. The simulated results for the 
optimal control case are shown in Figure 9
dashed lines.  
 
We see from Figure 9a that the simulated solution 
increasingly diverges from the proposed theoretical 
solution over time. We expect some deviation since 
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optimized SBB solution 
is shown in Figure 8. 

SBB is similar to the 
, except for the control 

durations for maximum drag are evenly spread out. 
We see that instead of allowing the solution to drift 
towards the desired separation angle, we must force 
the separation angle to its nominal at a specific time. 

optimal, and the total 
time necessary to achieve nominal takes a few more 

. The SBB approach simply trades operational 
lifetime for reduced operational complexity. 

 

 

control (a) Separation 

Angle vs Time (b) Drag Profile vs Time 

in the presence of higher 
, we simulate the orbits using 

rekit. In addition to the constant density assumption 
to exclusively compare 

our current results with additional forces), we add 
order as well as solar 

radiation pressure. The simulated results for the HBT 
case are shown in Figure 9a as the 

the simulated solution 
increasingly diverges from the proposed theoretical 

We expect some deviation since 
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the circular assumption that we made previously does 
not hold as well under the addition of forces, as the 
orbits tend to be at least slightly elliptical. 
Additionally, the equations developed earlier 
considered only the average change in velocity, while 
the actual change in velocity possesses higher order 
harmonics.  
 
However, we may be more interested in the 
difference in angles of successive satellites, as that is 
the basis for the utility function that we are 
integrating over. From Figure 9b we see that the 
separation angles converge to roughly 18°, which is 2° 
short of our target phasing. Recall that we utilized the 
HBT utility function, and that a separation angle 
close to nominal has approximately the same value as 
the nominal itself. In this respect the simulation has 
acceptable tolerances, especially for a numerical 
simulation over such a lengthy period of time. 
 

 
(a) 
 

 
(b) 

Figure 9 Optimal Solution vs Orekit Simulation (a) 

Separation angles between all satellites and 1
st

 satellite 

(b) Separation angle between successive satellites 

 
We will now also simulate under the same conditions 
the Taylor series SBB solution. The results are shown 
in Figure 10. Again we see the simulated solution 
falling short of the nominal angle of separation. 
Curiously, we see that the final separation angle 
between successive satellites approach the same 
value as that of the previous simulation.  
 

 
(a) 

 
(b) 

Figure 10 SBB Solution vs Orekit Simulation (a) 

Separation angles between all satellites and 1
st

 satellite 

(b) Separation angle between successive satellites 

 

Table 1 shows the comparison between the optimal 
control and SBB approaches, as evaluated (as per 
equation 12) using both the Taylor series formulation 
and numerical simulations. As expected, the optimal 
solution gives the highest value, followed by the 
theoretical Taylor SBB solution. We see that our 
simulated result is quite suboptimal due to the fact 
that we do not reach our final optimal values. 
Surprisingly the simulated bang-bang solution 
performs better than that of the simulated optimal 
solution, again due to perturbing forces.  
 

Method Total Utility 
[deg*days] 

Relative 
performance 

Taylor optimal/HBT 
2649.1 100% 

Numerical optimal/HBT 
2159.6 81.5% 

Taylor SBB/HBT 2574.3 97.2% 

Numerical SBB/HBT 
2247.2 84.8% 

Table 1 Total utility (Eq. 9) comparison of control 
approaches and simulations methods. 

To remedy the issue of the separation angle not 
approaching nominal in the simulated case, we can 
again use Taylor equations 6 and 7 close to the point 
where we are ready to make our final maneuver. 
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Another method is to use differential control near the 
final switching point, such that we ease into our 
desired orbit. The second method is preferable if our 
change in separation angle is large. Both these 
methods have been shown to work, albeit at the cost 
of decreasing our total utility. 
 
An interesting side effect of this phasing technique is 
a difference of the ascending node between the orbits. 
This effect is inescapable, as we have no control over 
the cross-track motion. At the simulated altitudes, the 
cumulative effect of J2 at differing altitudes results in 
a longitude of ascending node angle difference of 
roughly 1° over 2 months.  
 
V. Conclusions 
 
We have developed here an optimal control 
formulation of the initial orbit phasing problem for a 
constellation of satellites, using only differential drag. 
We make the constant atmospheric density and 
circular orbit assumptions to derive our state 
equations. To evaluate control approaches a 
reasonable utility function must be posed that reflects 
the usefulness of a particular angle of separation 
between consecutive satellites. Three alternatives 
were compared, and it was found that the hyperbolic 
tangent (HBT) utility function works particularly 
well and captures the nature of such a utility 
evaluation. The optimal solution when maximizing 
total utility when using the HBT utility function is a 
bang-bang solution which is convenient to implement 
on satellites in orbit.  
 
We also developed the Taylor approximation to the 
analytical equations, recognizing that the constant 
atmospheric density assumption is untrue for such a 
long period of time. As well, this formulation allows 
us to look at another set of solutions simpler than that 
of the optimal: the SBB solution where each satellite 
is only allowed 1 maximum drag maneuver 
throughout its acquisition phase. The formulation is 
successful due to the fact that the separation angle 
change very closely approximates a linear function 
over time. Due to the nature of the boundary 
conditions and equations, the solution is found by 
searching over an initial maximum drag duration that 
eventually yields all other times and durations of 
maximum drag of the remaining satellites. The 
formulation can be extrapolated to different 
atmospheric densities over discrete time periods, 
given that we are able to accurately model such 
changes. The solution is expectedly sub-optimal, but 
yields another practical solution to on-orbit drag 
maneuvers. 
 

Simulation results show that the addition of 
perturbing forces such as spherical harmonics and 
solar radiation pressure lowers the expected optimal. 
However, the angle of separation between successive 
satellites do converge on a value close to optimal, 
and given our utility function, it is within reason. 
Remedies for the situation include deriving a Taylor 
series formulation close to the final switching point 
such that we switch at a later time, or introducing a 
differential control method close to this location. 
 
Future work involves evaluating control methods 
against a realistic non-constant drag model, and the 
additional investigation of station keeping methods. 
As well, there exists inherent dependencies on many 
estimated parameters within our equations, such as 
atmospheric density or drag coefficients. Analyzing 
the sensitivity of the solution to changes in these 
unknowns is another area that needs to be addressed. 
Currently, the SBB method is preferred for the 
acquisition phase due to its ease of implementation. 
On orbit tests and validation will be performed once 
the Flock 1 constellation is in orbit, in parallel with 
the development of more advanced station-keeping 
control approaches. 
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VI. Appendix 
 
This paper is based upon differential drag of 
Cubesats, and as such the following values are used 
for simulation: 
 
A = 4.9	de  (Mass) 

�� = 2.2  (Drag coefficient) 

� = 2.5 ∗ 10!�� hX�" (Atmospheric density) 

=�QT = 0.225	A� (Maximum area) 

=�3K = 0.0371	A� (Minimum area) 

k3K3�3Q� = 400	dA (Initial altitude) 

�3K3�3Q� = 7668	�P   (Initial velocity) 

&�Q�X�� = �
n 	o�G   (Optimal separation angle) 
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Non-dimensionalization of the parameters is used to 
avoid numerical issues during the search for the 
optimal solution: 
 

� = �
;∗�Ip (Time) 

 
� = �

�III (Velocity - converts to km/s) 

 

Θ = �qI
� &  (Separation Angle - converts to deg)  
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