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Abstract
Wepropose a type of admissible-region analysis for track initiation inmulti-satellite problems
when angles are the primary observable. Pairs of optical observations are used to calculate
candidate orbits via a Lambert solver by hypothesizing range values. The method is attractive
because it allows multiple levels of parallelization of the track-initiation process. Orbital
element partitions are introduced to divide the admissible region into smaller search spaces
to be processed on individual computer nodes. For a specified rectangular partition in the
space of orbital elements, constraints are developed to bound the values of range that will lead
to initial orbit hypotheses (data association hypotheses) associated with that partition. These
bounds allow us to parallelize the generation of candidate orbits, because each element-space
partition can be handled independently of the others. Several constraints are developed and
shown to limit the range pair hypotheses effectively to the constrained admissible region
based on the orbital element partitions. Examples are provided to highlight the topology of
the proposed constraints.
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1 Introduction

The advent of high-sensitivity, high-capacity optical sensors for space surveillance presents
us with interesting and challenging tracking problems. Accounting for the origin of every
detection made by such systems is generally agreed to belong to the “most difficult” category
of tracking problems. Especially in the early phases of the tracking scenario, when a catalog
of space objects is being compiled or when many new objects appear in space because of an
on-orbit explosion or collision, one faces a combinatorially large number of data association
hypotheses to evaluate. The number of hypotheses is reduced to a more feasible number if
observations close together in time can, with high confidence, be associated by the sensor into
extended tracks on single objects. Most current space surveillance techniques are predicated
on the sensor system’s ability to form such tracks reliably. However, the required operational
tempo of space surveillance, the very large number of objects in Earth orbit and the difficulties
of detecting dim, fast-moving objects at long ranges mean that individual sensor track reports
are often inadequate for computing initial orbit hypotheses.

In fact, this situation can occur with optical sensors even when the probability of detection
is high. For example, the arc of orbit that has been observedmay be too short ormay have been
sampled too sparsely to allow well-conditioned, usable orbit estimates from single tracks. In
that case, one has no choice but to solve a data association problem involving an unknown
number of objects and many widely spaced observations of uncertain origin. In the present
analysis, we are motivated by this more difficult aspect of the satellite cataloging problem.

The primary goal of this work is to capture all new orbits represented in a large set of obser-
vations in a manner that leverages the computational efficiency of modern computers. The
proposed method will create a large number of candidate orbits. However, the parallelizable
nature of the method helps to manage the processing time. Amotivating factor is the need for
methods that can keep up with incoming data. The sensor network is continually expanding,
and the current system already has a high throughput of observations. Considering mod-
ern multi-target estimation methods (Jones et al. 2016; Vo et al. 2017) under development,
the proposed method can be included as a birth-model in the estimation scheme to handle
uncorrelated observations.

In particular, consider the angles-only case, in which angle-rate values are not available
or are too inaccurate for reliable use. Assume that we have a pair of line-of-sight unit vectors
ū1 and ū2, measured at time t1 at station position R̄1 and time t2 at station position R̄2,
respectively. The difference between the observation times t2− t1 is the time-of-flight�tTOF.
See Fig. 1 for a visualization of the geometry. Assume, without loss of generality, that t2 > t1.

We want to test the hypothesis that these two observations are associated with the same
space object. To this end, attach a set of hypothetical range values, {ρ1,m,m = 1, 2, . . . } and
{ρ2,n, n = 1, 2, . . . }, respectively, to each of these measured unit vectors and then generate
candidate orbits by solving Lambert’s problem for each of the pair-wise combinations of
hypothetical orbital position vectors r̄1,m and r̄2,n . Then each hypothetical orbit from the
solution of Lambert’s problem is a hypothesis that must be either confirmed or eliminated
through comparisons with other observational data. The range pairs that define a feasible
orbit form a region in the (ρ1, ρ2) plane. Given enough range hypotheses for each observed
line of sight, it is guaranteed that a viable candidate orbit is generated for every object that has
been observed at two or more distinct times. With a large data-set of measured line-of-sight
unit vectors, we can, in principle, consider all possible pairs of observations and solve the
family of Lambert problems for each pair. However, the Cartesian product of the set of range
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Fig. 1 Geometry of initial orbit determination problem

values for each observed line of sight with the sets of range values from every other line of
sight implies a possibly prohibitive number of Lambert solutions to generate and check.

From a theoretical point of view, given Nz observations of line of sight, not necessarily
close together in time, the computational load of Lambert-based methods is asymptotically
proportional to N 2

z (Nz-choose-2 combinations), because two observations per data associa-
tion hypothesis are needed. The total computational complexity for generating hypothetical
orbits in our approach is then (NzNρ)2, where Nρ is the average number of range hypotheses
considered for each observation. With traditional methods of angles-only initial orbit deter-
mination, including that of Gooding (1993, 1997) one faces a computational load that is
asymptotically proportional to N 3

z (Nz-choose-3 combinations), because three observations
must be associated together to compute the range and hence the candidate orbit. The meth-
ods developed by Karimi and Mortari (2011) are more robust than traditional methods, but
these also require at least three observations per association hypothesis. In fact, the approach
of Karimi and Mortari works better with more observations per association hypothesis, but
then one faces a computational load that scales like N 4

z , N
5
z , or even higher. In general, the

computational complexity is polynomial in the number of observations, with the polynomial
degree equal to the number of observations per data association hypothesis.

How shouldwe limit the number of range hypotheses tomake the total number of candidate
orbits manageable while also generating candidates that are likely to correspond to real orbits
of interest? If angle-rate information were available, (ρ1, ρ̇1) bounds could be imposed based
on some admissible-region analysis of the type developed by numerous authors (Milani et al.
2004;Milani andKnezevic 2005; Tommei et al. 2007, 2009; Fujimoto et al. 2010; Farnocchia
et al. 2010; Gronchi et al. 2010). When angles are the only observable, in a similar manner
we define a region in the (ρ1, ρ2) plane for a pair of observations analogous to the (ρ1, ρ̇1)

admissible region. We call this point set in the (ρ1, ρ2) plane the range–range admissible
region. Section 3 discusses the definition of this range–range admissible region and provides
some illustrations.

Naturally, processing every possible combinationwith an iterativeLambert solver could be
prohibitive for serial processing of a large set of new observations. Instead, the computational
burden is distributed among many computer nodes. Each node will handle a separate set of
orbits by dividing the space of orbital elements into partitions. Any partition of the space
of orbital elements, including the whole space itself, can be divided into smaller partitions,
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Table 1 Comparison of track-initiation methods

Classic RR-CAR Angle-rate CAR

Unique observations 3 2 1

Possible combinations Nz -choose-3 Nz -choose-2 Nz

Observation types ū1, ū2, ū3 ū1, ū2 ū1, ˙̄u1
Hypotheses needed N/A ρ1, ρ2 ρ1, ρ̇1

Solution type Exact Approximate Approximate

Solutions/candidates 1 Nρ1
× Nρ2

Nρ × Nρ̇

and each partition can be handled independently and therefore in parallel. Additional details
are provided in Sect. 2. We seek to generate hypothetical range values representing only
orbits that lie in a bounded region of semi-major axis a, eccentricity e, and inclination i
for each partition. For the purposes of this discussion, the other orbital elements are left
unconstrained. It will turn out that these three elements constrain the possible values of range
in simple ways. Each partition is specified by the intervals [amin, amax] j , [emin, emax] j , and
[imin, imax] j , where j is the partition identifier. If computation time is still an issue, the
partitions can be made smaller so that the overall parallel computation time is feasible, at the
cost of requiring more computer nodes.

Since we are concerned with limiting the element space within each partition, we call the
set of range pairs that represent an orbit defined by partition j the range–range constrained
admissible region (RR-CAR), as opposed to the range–range-rate constrained admissible
region explored in previous works, e.g., DeMars et al. (2012), which simply labeled it the
constrained admissible region (CAR). Those prior efforts assumed that angle rates were
available, and the CAR was specified for each observed line of sight independently. See
Table 1 for a comparison of the methods discussed. Further discussion and comparison with
the prior development of the CAR is provided in Sect. 6.

This idea for performing parallel angles-only track initiation was first introduced by
Schumacher Jr. (2012a), then further developed in a series of conference papers including
Schumacher et al. (2012b; 2013) and Roscoe et al. (2014). These papers presented bounds
on range and range rate for single and dual observation epochs, presented examples and
investigated the effects of angle-rate errors on range-rate boundaries. Other authors have
sought tighter bounds on the range pair hypotheses approach developed by Schumacher et
al. Fujimoto and Alfriend (2015) showed that additional hypotheses could be rejected with
angle rates even if they possess large errors. Siminski et al. (2014) started with the range
hypotheses approach and applied optimization techniques to find the best matching range
pair. Both of these efforts were reliant on angle rates. A key feature of the approach offered
in this article is that we do not need angle rates, so that we can accommodate observations
from relatively simple optical sensors. A conference paper by Gaebler et al. (2017) devel-
oped the additional constraints that allowed for an effective implementation while ignoring
the angle rates. The present article describes the full parallel track initiation concept and
methods, presenting a complete set of constraints that can efficiently reject range hypotheses
outside a given partition, thus limiting the number of costly Lambert solutions required. The
overall algorithm is described in Table 2. This approach produces an effective, parallelizable
track-initiation procedure.

The constraints are a set of geometric and kinematic conditions that can be applied to
each range pair hypothesis. The goal of these bounds and checks is to reduce the range–

123



Parallel initial orbit determination using angles-only Page 5 of 20 60

Table 2 Overall algorithm for generating candidate orbits from angles-only observations

Steps

Collect uncorrelated observations

1 Specify partitions on (a, e, i)

2 Enumerate combinations of uncorrelated observations

For each partition: (in parallel)

For each pair of observations: (serially or in parallel)

3 Compute supremum bounds for range hypotheses

4 Populate range pair hypotheses using {fine, coarse, targeted} sampling strategy

5 Reject range pair hypotheses via constraint checks

For remaining range pair hypotheses:

6 Generate candidate orbits via Lambert solver

Seed/birth new targets based on candidate orbits

This set of steps would ideally be a function within an overall tracking filter process. Numbered steps are
directly addressed in this article

range hypothesis space as nearly as possible to the actual RR-CAR for each set of element
partitions. These constraints are discussed in Sect. 4. This approach allows us to consider
a manageable number of range hypotheses for each partition before generating candidate
orbits via a Lambert solver.

For the purpose of developing this methodology we are assuming elliptical orbits with
observations spanning a single orbital period.The limitation to a single orbital revolution is not
essential to our method, as noted below in connection with the solution to Lambert’s problem
for each (ρ1, ρ2) hypothesis. We have chosen to simplify our discussion in this manner
to highlight the new constraints offered here for rejecting hypotheses. Allowing multiple
orbit hypotheses per range pair will not affect the use of our constraints. Our examples also
ignore observation uncertainty, although nothing prevents the inclusion of such perturbations.
Uncertainty in the observations does not change the logic of the method we outline, and does
not change the ability to scale our method to large numbers of observations.

This report lays out the fundamentals of the methodology and introduces efficient geomet-
ric and kinematic constraints that lead to upper and lower bounds on the possible values of
range for each pair of observations, given only angle data at discrete times. Several inequali-
ties are presented that must be satisfied simultaneously, and the most restrictive superposition
of the various constraints becomes the working result. These regions can be exhibited numer-
ically, and there is plenty of opportunity for future study of the geometrical and topological
properties of these regions. Section 5 provides numerical examples of the constraints for
two orbital regimes. In summary, a new methodology is proposed which provides a fast and
efficient means to generate candidate orbits in a large track-initiation problem.

2 Parallel track initiation

The availability of supercomputers motivates our desire to parallelize the angles-only track
initiation for large cataloging problems. Classic angles-onlymethods, e.g., Gooding’smethod
(1997), cannot be parallelized efficiently due to the N 3

z scaling in the number of combinations
needed and the fact that the candidate orbit solutions cannot be restricted a priori to a subset
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Fig. 2 Data flow chart for parallelizing the angles-only track-initiation method

of the element space. This means that each combination has to be processed serially. For
example, if there are 1,000 new observations at unique time steps, there are up to 166 million
combinations to test (1,000-choose-3 combinations). Forming these millions of combina-
tions is prohibitive. Our approach using element partitions and range hypotheses reduces the
complexity to N 2

z in the number of observations. With only two line-of-sight observations
required to generate candidate orbits, there are only 500,000 serial combinations to test.
However, this approach can be parallelized on two different levels, with respect to element
partitions and pairs of observations, potentially allowing high computational throughput in
the track-initiation phase of the surveillance problem.

Parallelization is implemented by processing orbital element partitions on different nodes.
Either the range–range admissible region described in Sect. 3, or a surveillance region of
interest, can be partitioned in this manner. A note on implementation: the partitions can be
evenly spaced to cover the search space, or a finer spacing can be used for regions where there
is a higher concentration of known objects and sparser spacing used in less populated regions
of space. Jones et al. (2015) provides a plot that highlights the uneven distribution of objects
in orbit. With this scheme, the partitioning can be adapted to the number of computational
cores available. On each core, the combinations of the received observations are checked
serially, but only within the partition of orbital elements. Figure 2 highlights the procedure
for parallelizing the candidate orbit generation. A major component of this methodology is
the ability to limit the range pairs before processing with a Lambert solver by identifying a
priori what range pairs are feasible within a partition.

The following sections present the range–range admissible region associated with an
element partition, together with the range–range hypothesis space that we use to approximate
it.We introduce a number of constraint checks that can be performed to identify, withminimal
computation, which range hypothesis pairs produce candidate orbits within a partition.

3 Range–range admissible region

This work is focused on estimating the orbits of a large set of new objects, e.g., space
debris, in orbit about the Earth. This is a different focus than that of Milani et al. (2004),
which estimated the trajectory of an asteroid in a heliocentric orbit. Tommei et al. (2007)
first applied the admissible-region method to Earth orbiting objects. The definition of the
range–range admissible region adopted here is similar to that presented by Maruskin et al.
(2009). Specifically three restrictions are considered: the specific energy must be negative
(E < 0), the perigee radius of the orbit must not impact Earth (rp > R⊕ + 100 km),
and the apogee radius must not be too large (ra < 25R⊕), where R⊕ = 1 Earth radius.
Two examples, representing different orbital regimes (a LEO and GEO), are provided to
illustrate the range–range admissible region. A GEO tracking example is the ideal scenario
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Table 3 Observer locations R̄ and the line-of-sight unit vectors ū at t1 and t2 for the two example scenarios

Parameter LEO values GEO values

R̄1 [− 5543.8; − 2054.6; 2387.8 ] km [− 5543.8; − 2054.6; 2387.8 ] km

R̄2 [− 5505.5; − 2155.3; 2387.8 ] km [ 5584.9; 1940.1; 2387.8 ] km

ū1 [− 0.827; − 0.231; 0.513 ] [− 0.989; − 0.1297; − 0.0705 ]

ū2 [− 0.327; − 0.914; 0.240 ] [ 0.991; 0.1225; − 0.0609 ]

�tTOF 250 s 42800 s

The time-of-flight �tTOF is the difference between the measurement times

Fig. 3 Examples of range–range admissible regions, a LEO case on the left and a GEO case on the right.
Vertical axes represent range hypotheses ρ1 for observation 1. Horizontal axes represents range hypotheses
ρ2 for observation 2. Both are displayed in units of Earth radii R⊕. Solid contours are semi-major axis in units
of Earth radii. Dashed contours are eccentricity

for the method proposed. The LEO example is included as a contrasting case, to highlight the
constraint topography. Table 3 provides the observer locations and line-of-sight vectors for
the examples. Figure 3 shows the two examples of the range–range admissible region in terms
of eccentricity and semi-major axis contours. For example, if the analyst expects to observe
a circular orbit, these plots indicate what range values could possibly define such an orbit.
While much work in the literature has been devoted to studying the admissible region and its
evolution in terms of range and range rate, here we are interested in range–range constrained
regions based on partitioning the search space in order to improve parallelization.

4 Range–range constrained admissible region

Maximizing the performance in the parallelized environment requires efficient constraints
based on a logical taxonomy. The space domain is typically described by the altitude of
the orbit, or unique values of eccentricity and inclination, guiding our choice to use orbital
elements for the partitions. The following constraints have been identified to partition the
space domain based on Keplerian orbital elements, focusing on three elements: semi-major
axis a, eccentricity e, and inclination i . A partition is specifiedwith subscripts of theminimum
and maximum values: [amin, amax] j , applicable to partition j , which will of course have
bounds on e and i as well. When an element is an unknown in an equation it is specified
with an asterisk superscript: a∗. Some of the constraints can be posed directly in terms of the
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hypothesized range ρ, and some are more suitably posed in terms of the position vectors: r̄ .
The position vector can be definedwith the observer position R̄ and the observed line-of-sight
ū:

r̄ = R̄ + ρū. (1)

The given time-of-flight (TOF) is �tTOF = t2 − t1. The angle between the two observed
positions r̄1 = r̄(t1) and r̄2 = r̄(t1) is the change in true anomaly, �ν. Magnitudes of
the position vectors are shown without an overbar: r = ‖r̄‖. Some useful identities in the
derivation and definition of the constraints are the chord c and semi-perimeter s:

c = ‖r̄2 − r̄1‖ (2)

s = 1

2
(r1 + r2 + c). (3)

The first subsection outlines the starting point of the process: to find the most conservative
set of bounds on (ρ1, ρ2). While convenient in mitigating the need to consider infinite values
of ρ, the supremum bounds do not sufficiently reduce the set of range hypotheses to the RR-
CAR as desired. It requires several constraints to do so. Some constraints are particularly
effective at rejecting hypothesis pairs defining orbits outside of the partitions, specifically
the constraints described in Sects. 4.5 and 4.6. For completeness, all the constraints we have
identified are presented. Depending on the approach undertaken, if a range pair hypothesis is
rejected due to any of the constraints, it can be removed from consideration. Alternatively, if
the range hypotheses are processed as a batch, the intersection of all the constraints is used.

4.1 Supremum bounds on range

Assuming that all orbits of interest are elliptical, will constrain the orbital radii to lie between
the smallest allowable perigee and the largest allowable apogee:

amin(1 − emax) ≤ r ≤ amax(1 + emax). (4)

The values of range that correspond to these limits on orbital radius can be found explicitly
using the vector triangle relationship of Eq. 1. Considering the perigee case and squaring:

a2min(1 − emax)
2 ≤ R̄ · R̄ + 2(R̄ · ū)ρ + ρ2. (5)

Rearranging the equation leads to a quadratic equation in terms of ρ:

ρ2 + 2(R̄ · ū)ρ − [a2min(1 − emax)
2 − R̄ · R̄] ≥ 0. (6)

The roots of this equation provide a lower limit on range based on the smallest allowable
perigee. Negative roots can be ignored because the range values must be non-negative. The
lower supremum bound is:

ρ ≥ −(R̄ · ū) +
√

(R̄ · ū)2 + a2min(1 − emax)2 − R̄ · R̄. (7)

Similarly, for the largest possible apogee, the upper limit on range is:

ρ ≤ −(R̄ · ū) +
√

(R̄ · ū)2 + a2max(1 + emax)2 − R̄ · R̄. (8)

The supremum bounds on range are useful as a first step to limit the hypotheses under
consideration. They are especially attractive because they are explicit bounds on range that
can be computed for each line-of-sight vector individually. However, there will still be a large
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set of hypotheses that are not valid within the partitions on a and e, and the inclination is
not taken into account at all. Consequently, additional constraints are needed to improve the
efficiency of rejecting range hypotheses. The rest of the constraints presented in the following
subsections depend on a pair of range hypotheses.

4.2 Inclination

The orientation of the orbit can be partitioned based on the inclination using the interval
[imin, imax]. Calculate the unit vector n̄ normal to the candidate orbital plane:

n̄ = ± r̄1 × r̄2
‖r̄1 × r̄2‖ . (9)

The ambiguous sign depends on whether the transfer is a short-way (+) or long-way (−)
transfer. With the sign chosen, the inclination is given unambiguously for a range pair by:

cos (i) = n̄ · k̄. (10)

The inclination of the candidate orbit lies in the specified interval [imin, imax] provided
that cos (i) lies in the interval [cos (imax), cos (imin)]. Thus the constraint check is:

cos (imax) ≤ n̄ · k̄ ≤ cos (imin), (11)

Reject otherwise.

In the case of low-inclination intervals, it may be advisable to replace Eq. 11 with:

sin (imin) ≤
√
1 − (n̄ · k̄)2 ≤ sin (imax). (12)

4.3 Zero-energy time of flight

This work is concerned with tracking objects in orbit around the Earth; hence, hypotheses
can be limited to captured orbits. For a given pair of position vectors, the possible TOF values
decreasemonotonicallywith orbital energy. Elliptic (negative-energy) orbits will always have
a TOF longer than the parabolic case (zero-energy), and hyperbolic (positive-energy) orbits
will always have a TOF that is shorter. The TOF for the zero-energy case�tZ E is the classical
parabolic TOF, so the negative-energy constraint becomes:

�tZ E = 4

3

√
a30
μ

(1 ± λ3) (13)

Reject if �tTOF ≤ �tZ E .

The ambiguous sign depends on whether the transfer is a short-way (+) or long-way (−)
transfer. See Battin (1999) pp. 276–277 for a development of Euler’s equation for parabolic
orbits. The parameter λ is defined in terms of the position vectors:

λ2 = r1 + r2 − ‖r̄2 − r̄1‖
r1 + r2 + ‖r̄2 − r̄1‖ . (14)
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4.4 Special Lambert solutions

The geometry of an ellipse leads to some useful restrictions which are considered special
solutions of Lambert’s problem. For a given pair of positions r̄1 and r̄2 there is a lower limit on
the eccentricity that is realizable. Call this value e0. Battin (1999) discusses the fundamental
ellipse on p. 256, calling e0 the minimum eccentricity of all possible orbits connecting r̄1 and
r̄2. That is, the geometry of r̄1 and r̄2 is guaranteed to have an eccentricity greater than e0.
Therefore if e0 is larger than the upper partition value of eccentricity, that particular range
hypothesis pair can be rejected.

e0 = |r1 − r2|
‖r̄2 − r̄1‖ , (15)

Reject if e0 > emax.

Likewise there is a lower limit on the possible semi-major axis value, a0. Battin (1999)
presents a0 for the minimum-energy orbit on p. 240. If a0 is larger than the partition bounds
on semi-major axis reject that range pair hypothesis:

a0 = 1

4
(r1 + r2 + ‖r̄2 − r̄1‖) = 1

2
s, (16)

Reject if a0 > amax.

Refer to Chapter 6 of Battin (1999) for an in-depth discussion of the geometry of the
orbital problem, and visualizations of the minimum possible elements. While useful, these
constraints are limited in utility because they bound the hypothesis region with only lower
limits. The following two constraints are important contributions because they bound the
hypothesis region with lower and upper limits.

4.5 Vacant focus geometry

The RR-CAR can be bounded with the lower and upper limits of the eccentricity partition by
considering the geometry of the locus of vacant foci. Battin (1999) discusses the geometry
of this locus in detail. The vacant focus must lie along a hyperbola between the two position
locations. Specifying bounds on eccentricity [emin, emax] limits how close or far the vacant
focus can lie from the primary focus or central body. Assuming Keplerianmotion and solving
for the position of the vacant focus relative to the primary focus leads to the following
constraint equation:

e2min ≤ c2 f (p∗)
‖r̄1 × r̄2‖2 ≤ e2max. (17)

The full derivation is provided in “AppendixA”. To simplify the derivation and discussion,
the variable f (p∗) is introduced, a quadratic function of the semi-latus rectum p∗:

f (p∗) = p∗2 − (1 − e20)(r2 + r1)p
∗ + r1r2(1 − e20). (18)

The extremes of Eq. 18, [ f (·)min, f (·)max], must be tested in Eq. 17, therefore requiring
the extremes of p∗:

pmin = amin(1 − e2max)

pmax = amax(1 − e2min).
(19)

The quadratic f (p∗) is concave up with a minimum value at pfmin. It is not immedi-
ately clear from Eq. 18 which side of the minimum value the semi-latus rectum partition
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[pmin, pmax] is on. The simplest way to handle the issue is to use the minimum and maxi-
mum functions:

f (p∗)min = min( f (pmin), f (pmax))

f (p∗)max = max( f (pmin), f (pmax)).
(20)

Alternatively, a logic check can be performed to find which side of the minimum value
p fmin that [pmin, pmax] lies on. Taking the derivative of f (p∗) and solving for the minimum:

p fmin = 1

2
(1 − e20)(r2 + r1). (21)

A special check is required in case the partition straddles the minimum. When pmin <

p fmin < pmax, the lower extreme of f (p∗) must be replaced with f (·)min = f (p fmin ). Using
the extremes of f (p), the constraint takes the form:

e2min ≤ c2 f (·)max

‖r̄1 × r̄2‖2 and
c2 f (·)min

‖r̄1 × r̄2‖2 ≤ e2max, (22)

Reject otherwise.

Note that there may be situations where e0, the smallest possible eccentricity allowable
given the geometry, is larger than emax. In these situations it is assumed that the hypothesis
has already been rejected per Eq. 15.

4.6 Monotonic time of flight

Since the TOF varies monotonically with the semi-major axis (orbital energy) the range
hypotheses can similarly be bounded with lower and upper limits through the semi-major
axis partition [amin, amax]. The semi-major axis partition must be transformed into a partition
on TOF, [�tmin,�tmax]. Lagrange’s form of Kepler’s equation provides a means to do so
(Battin 1999, p. 278):

�t(a∗, r̄1, r̄2) =
√
a∗3
μ

(
α − β − (sin α − sin β)

)
. (23)

Here iswhere our discussion is limited to the case of one revolution in theLambert solution.
AugmentingEq. 23 to allowmultiple-revolution solutions presents no essential difficulty. The
bookkeeping for hypothesis management has to accommodate possible multiple Lambert
solutions per range pair hypothesis. However, the overall constraint logic proposed here for
rejecting hypotheses is not changed. The angles α and β in Eq. 23 are defined as:

sin
α

2
=

√
s

2a∗

sin
β

2
=

√
s − c

2a∗ .

(24)

This version of the TOF equation is a function of the unknown semi-major axis a∗ and
the range hypotheses through c and s which are defined in Eqs. 2 and 3, respectively. Care
must be taken with the quadrant ambiguities:
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Table 4 Orbital partitions for constraint examples

Parameter LEO GEO

a (km) [7478.1 8278.1] [41164 43164]

e [0 0.15] [0 0.04]

i (◦) [15 35] [0 5]

If �tTOF > �t(a0, r̄1, r̄2),

Then α = 2π − α0; (25)

If �ν > π,

Then β = −β0.
(26)

Here the terms α0 and β0 are the principal values from the equations in Eq. 24. In Eq. 25,
the term �t(a0, r̄1, r̄2) is the TOF of the minimum-energy ellipse, which can be found using
the minimum possible semi-major axis a0 from Eq. 16. Prussing (1979) provides a short and
enlightening discussion of the geometric interpretation of α and β. Note that there will be
a different TOF partition for each pair of range hypotheses, or for each Lambert solution,
if multiple revolutions are allowed. Once the TOF partitions are computed, a range pair
hypothesis can be checked to see if it is consistent with the given TOF (�tTOF):

�tmin ≤ �tTOF ≤ �tmax, (27)

Reject otherwise.

5 Numerical examples

Two examples are provided to illustrate the constraints presented. These examples are a
continuation of those presented in Sect. 3. These exampleswere arbitrarily chosen to highlight
the difference in constraint topography for two common orbits: LEO and GEO. The orbital
element partitions for both cases are provided in Table 4.

As discussed in Sect. 4.1, the supremum bounds are found first and set as the axis limits
of the plots in this section. This is step 3 of Table 2. After identification of the supremum
bounds on range, an evenly spaced grid of hypothetical range values is created for the two
line of sights, i.e., step 4. The grid is arbitrarily chosen to be 500×500 samples. Hence, there
are 250,000 range pairs created and checked. Step 5 of Table 2 involves testing the range
pair hypotheses with each of the constraints from Sect. 4. In the following plots each of the
constraints are plotted separately; then, they are combined to show how well the hypothesis
region bounds the actual RR-CAR found via a full searchwith Lambert’smethod. Red regions
are rejected range pairs, and the blue regions are accepted range pairs. In the total constraint
plot, the green region is the actual RR-CAR.

The goal of developing constraints was to efficiently reject cases outside of the given
partition. Hence, if the blue region were significantly larger than the green region, then the
constraints would be inefficient. Conversely if the blue region were smaller than the green
region, then valid caseswould be rejected causing themethod tomiss candidate orbits. Ideally
the blue hypothesis region just barely overlaps the green RR-CAR.

Figure 4 shows the LEO example. The observer positions and LOS vectors are provided
in Table 3. The top row of plots on the left of Fig. 4 show the effect of the special Lambert
solution constraints a0, e0, and�tZ E . Along the bottom row are the inclination, time of flight,
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Fig. 4 LEO example showing constraint violations. On the left is each individual constraint shown separately.
On the right is the total set of constraints with the RR-CAR shown. Blue is valid hypotheses, red is rejected
hypotheses, and green is the RR-CAR

Fig. 5 Enlarged view of the total set of constraints for LEO example. Blue are valid hypotheses, red are
rejected hypotheses, and green is the RR-CAR

and vacant focus constraints. On the right of the figure is the union of all the constraints. Of
the 250,000 generated samples, only 1,035 pairs pass the constraints, or 0.41% of the total
samples. Of those, only 15 samples pass the constraints but are not in the CAR (green region).
This is the blue region barely surrounding the CAR. The inefficiency of the constraints is
1.47% (15 of 1,035). At the scale of these plots, it is difficult to see any blue regions since the
constraints bound the RR-CAR very well. Figure 5 shows a zoomed in view of the RR-CAR
to highlight how effective the constraints are.

The vacant focus constraint is mainly a function of eccentricity and it is comparable to the
e0 constraint. For this case, the a0 constraint is not active; we have noticed that typically it
becomes active for transfer angles near �ν ≈ 180◦. The time-of-flight constraint eliminates
most of the search space, and appears to obviate the need for the zero-energy transfer time
constraint.

The GEO example is shown in Fig. 6. This case has a transfer time near�ν ≈ 180◦, hence
the a0 constraint is active. This geometry also causes the RR-CAR to be fairly large. Here
29,890 pairs pass the constraints, or 11.96%. Of those 236 were not in the CAR, representing
only a 0.80% inefficiency. We have noticed that the inclination constraint is almost always
active for this example when �ν ≈ 180◦. Again the hypothesis region bounds the RR-CAR
closely.
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Fig. 6 GEO example showing constraint violations. On the left is each individual constraint shown separately.
On the right is the total set of constraints with the RR-CAR shown. Blue are valid hypotheses, red are rejected
hypotheses, and green is the RR-CAR

6 Discussion

Although every orbit within the element-space partition corresponds to values of range that
lie within the bounds given here, some values of range that satisfy the bounds may lead to
orbits that lie outside the given partition. This circumstance represents inefficiency in the
parallelization of track initiation: nearly the same candidate orbits near the boundaries of
the element-space partitions may be generated in both of the adjacent partitions, if the range
hypotheses are planted densely enough. Using small partitions with dense grids could also
allow the use of linearized Lambert solutions as presented byMcMahon and Scheeres (2016)
to further reduce the computational burden. How to sample the hypothesis regions is, in fact,
still an open question for hypothesis methods such as this. Typical approaches use either a
rectangular grid or a Delaunay triangulation (Tommei et al. 2007), but an alternate approach
using an iso-energy grid has been suggested by Siminski et al. (Siminski et al. 2013a, b).

In any case, no candidate orbits within the given element-space partitions will be missed
because of the bounds and other checks given here. The extent and cost of the inefficient
duplication of candidate orbits will depend on the particular data-sets and element partitions
of interest, andmay require further study if the tracking scenario is computationally stressing.
In practice, of course, within any element partition, any of these extra orbit hypotheses can
be either kept or discarded. If they are kept, we would have, at most, a bookkeeping problem
of transferring the extra orbit solutions to the correct element partition. The trade-off in this
case is that merely moving data between processors always takes time.We note also that each
candidate orbit is used in exactly the same way, and the overall tracking job proceeds in the
same way, regardless of whether any candidate orbits happen to originate in an unintended
element partition, as long as all observations are available to each processor.

6.1 Comparison to traditional methods

The approach outlined in this work allows us to make use of an already proven method (the
Search and Determine algorithm and software, SAD) that was designed for generating and
testing data association hypotheses for position-type observations typical of radar sensors
(Coffey et al. 1996a, b, 2002). However, our emphasis on generating candidate orbits with
a Lambert-based approach in the angles-only case is not merely a matter of convenience in
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extending an existing method such as SAD. Certainly, the bounds on range that we present
here could be used in a variety of ways with other angles-based initial orbit determination
methods. Both the traditional methods of angles-only orbit determination (Escobal 1965)
and modern methods such as those of Gooding (1993, 1997), Karimi andMortari (2011) and
others (Sarnecki 1997) rely on solving for the range by either root-finding or optimization.
Such algorithms can always be made to work more reliably when rigorous upper and lower
bounds on the unknown quantity are available. However, one encounters at least three difficul-
ties in trying to apply direct angles-only methods to a large, multiple-target catalog-building
scenario.

First, the direct angles-only methods do not scale to large problems as well as a Lambert-
based method does. Of course, it may not be clear a priori in any particular case which
approach finally requires fewer processors to achieve a desired production rate of orbit solu-
tions.Higher-degree polynomial scaling requiresmore processorswith traditional approaches
and smaller element partitions requiremore processors on the range hypothesis approach. The
choice may depend on the size and character of the data-set itself and the element partitions
of interest.

Second, a Lambert-based method, ideally implemented, will produce a candidate orbit for
every real object that has been observed at least twice. In comparison, a direct angles-based
method, such as Gooding’s, will produce candidate orbits only for those real objects that have
been observed at least 3 times. An N 4

z method will produce candidate orbits only for those
real objects that have been observed at least 4 times, and so on. Hence, the Lambert-based
method may do a more complete job of generating viable candidate orbits from real data-
sets, while scaling more favorably than the direct angles-based methods for large numbers
of observations.

Third, although the range bounds presented here allow one to reject candidate solutions
based on range, with a direct angles-only method one still has to compute the range in terms
of the observations in order to find out if it satisfies the bounds. This turns out to be most of
the computation needed to produce the candidate orbits themselves. In the Lambert-based
approach, the range bounds allow us to avoid most of the potential computation for the
candidate orbits.

6.2 Comparison to angle-rate methods

The use of angle rates, when they are available, is especially important, and has been docu-
mented in many papers on the use of the attributable vector (of measured angles and angle
rates) originally proposed byMilani et al. (2004). If angle rates are available or can be derived
from the observation data, a complete orbit hypothesis can be formed for each observation
without any iterative solutions, merely by choosing a value of range and a value of range rate.
This is the approach outlined by DeMars et al. (2010, 2012), where the use of an element-
space partition via the constrained admissible region in the range–range-rate plane is first
introduced. For example, denoting the gravitational parameter by μ, write the first integrals
of Keplerian motion as:

Energy: E = ( ˙̄r · ˙̄r)/2 − μ/‖r̄‖ (28)

Angular momentum: h̄ = r̄ × ˙̄r (29)

Laplace vector: μē = ˙̄r × (r̄ × ˙̄r) − μr̄)/‖r̄‖. (30)
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Given the vector triangle relation r̄ = R̄+ρū and its time derivative for each observation,
the CAR can be defined in the (ρ, ρ̇) plane for each partition in the space of elements by
means of inequalities such as:

− μ/(2amin) ≤ E ≤ −μ/(2amax) (31)

cos imax ≤ (h̄/‖h̄‖) · k̄ ≤ cos imin (32)

emin ≤ ‖ē‖ ≤ emax. (33)

Here k̄ is the north polar unit vector in the Earth-centered inertial frame. For each obser-
vation, the values of range and range rate that satisfy these inequalities will result in orbits
that lie only within the given partition of the space of elements. As in the angles-only case,
this track-initiation problem is parallel with respect to element partitions. If provided with
bounds on range and range rate for each element partition, the number of orbit hypotheses
needed can be reduced for each partition by making the partitions smaller and using more
processors to cover the whole element space. DeMars and Jah (2012) have shown what the
CAR looks like for partitions of semi-major axis and eccentricity by a numerical treatment
of the above inequalities. Maruskin et al. (2009) have shown how the admissible regions
evolve in time and how the overlap of the admissible regions for different observations can
help solve the data association problem.

With accurate angle rates the track-initiation job scales linearly with the number of obser-
vations rather than as the square or cube,with a computational load proportional to (NzNρNρ̇ )

if Nρ̇ is the number of range rate hypotheses assigned to each observation. One could hardly
expect to do any better than this in solving a large track-initiation problem using optical data.
Our concern iswith the casewhen usable angle rates are not available, aswhenwehavewidely
separated angles-only observations. The usual attributable-vector and admissible-region anal-
ysis leads nowhere if angle rates are not available. For example, the track-initiationmethod of
DeMars et al. (2010), involving multiple hypotheses on range and range rate, requires simul-
taneous angle and angle-rate values. Similarly, the correlation and orbit determination study
performed by Milani et al. (2011), which used an admissible-region analysis, used simulta-
neous angle and angle-rate data. At present only direct angles-only methods that solve for
the ranges are available to handle the angles-only track-initiation problem. In this analysis
we have offered a Lambert-based alternative that may scale better with respect to the number
of observations than any current angles-only method.

6.3 Future work

Several approximations were made to develop this methodology which will need to be
addressed in future studies. For instance, Keplerian orbital dynamics is assumed in this
work. Optical observations are typically the main source of data for objects in higher orbits,
where the effects of drag are minimal, allowing simple dynamics approximation to hold
for longer periods. Further the time between observations of the same object will often be
short considering the amount of data generated by modern sensors. Hence it is assumed that
the impact of using simplified dynamics will be minimal. Future work should address the
robustness of the method when incorporating higher fidelity dynamics.

Another concern ignored in this article is the robustness of the method to noisy obser-
vations. Considering the effectiveness of the constraints it is feasible that some range pair
hypotheses may be rejected erroneously due to measurement uncertainty. If range hypothe-
ses are densely chosen (with a fine grad spacing), then it is likely that hypotheses along the
constraint boundaries will be close enough together to still generate an acceptable candidate
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target. This effect could be further remedied by padding the constraint tolerances. Roscoe
et al. (2014) investigated some of the effects of angle-rate measurement noise; a similar study
of typical uncertainty for angles-only observations should be investigated.

7 Conclusions

In this paper, a method is proposed to generate candidate orbits from a large data-set of uncor-
related angles-only observations. Themethod takes advantage ofmodern day supercomputers
with the ability to process in parallel on hundreds or thousands of nodes. Parallelization is
made possible by partitioning the search space, the range–range admissible region or the
surveillance region of the sensor, via the orbital elements: a, e, i .

The static constraint checks developed in this article are applied to efficiently retain only
physically feasible range pairs in the search space. A Lambert solver is then used to compute
candidate orbits based on this reduced set of range pairs. Because a Lambert solver is an iter-
ative method, the use of our constraints reduces the overall computational burden. Examples
are provided to highlight the range–range admissible region and to demonstrate the various
constraints developed. The efficiency of the constraints for two examples is around 98–99%
with zero false rejections.

Now that the foundation is laid, future efforts will explore performance comparisons with
existing methods. It is our hope that this work will have direct impact on the ability of an
operational tracking system to respond quickly to future break-up events.
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Appendix A: Derivation of vacant focus constraint

Assuming Keplerian motion, the derivation is limited to the two-dimensional space of the
orbital plane. The vacant focus location (X , Y ) relative to the primary focusmust reside at the
common point of three circles. One circle is around the primary focus with a radius of 2a∗e∗,
where a∗ and e∗ are the unknown semi-major axis and eccentricity. This circle represents the
distance the vacant focus can be from the primary. Two more circles are defined around r̄1
and r̄2 with radii q1 = 2a∗ −r1 and q2 = 2a∗ −r2, respectively. See Fig. 7 for a visualization
of the circles defined here.

The system of equations for the three circles is:

(X)2 + (Y )2 = (2a∗e∗)2 (34)

(X − r1x )
2 + (Y − r1y)

2 = (2a∗ − r1)
2 (35)

(X − r2x )
2 + (Y − r2y)

2 = (2a∗ − r2)
2. (36)

In expanded form Eqs. 35 and 36 are:

X2 + Y 2 − 2r1x X − 2r1yY = 4a∗2 − 4r1a
∗ (37)

X2 + Y 2 − 2r2x X − 2r2yY = 4a∗2 − 4r2a
∗. (38)
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Fig. 7 Geometry used to find the location of the vacant focus relative to the primary focus (lower left point).
Equations in the figure define the length of the radius (red line) for each circle

Substituting Eq. 34 into Eqs. 37 and 38 while also introducing the semi-latus rectum p∗
gives:

r1x X + r1yY − 2r1a
∗ = −2a∗ p∗ (39)

r2x X + r2yY − 2r2a
∗ = −2a∗ p∗. (40)

The desired location of the vacant focus (X , Y ) relative to the central body can be obtained
after some algebra:

X = 2a∗ p∗(r1y − r2y) + 2a∗(r1r2y − r2r1y)

r1r2 sin�ν
(41)

Y = 2a∗ p∗(r1x − r2x ) + 2a∗(r1r2x − r2r1x )

r1r2 sin�ν
, (42)

where�ν is the angular separation between the two observations. Replace X and Y in Eq. 34,
perform several steps of algebra, and the equation becomes:

p∗2‖r̄2 − r̄1‖2 + 2p∗r1r2(cos�ν − 1)(r2 + r1) + 2r21r
2
2 (1 − cos�ν)

r21r
2
2 sin

2 �ν
= e∗2. (43)

Introducing some useful identities

c2 = ‖r̄2 − r̄1‖2 (44)

r22 + r21 − c2 = 2r1r2 cos�ν (45)

e20 = (r1 − r2)2

c2
(46)

‖r̄1 × r̄2‖2 = r21r
2
2 sin

2 �ν, (47)

leads to:
c2(p∗2 + (1 − e20)(r2 + r1)p∗ + r1r2(1 − e20))

‖r̄1 × r̄2‖2 = e∗2. (48)

At this point it is convenient to specify a function f (·) as:
f (p∗) = p∗2 − (1 − e20)(r2 + r1)p

∗ + r1r2(1 − e20), (49)
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giving a compact equation:
c2 f (p∗)

‖r̄1 × r̄2‖2 = e∗2. (50)

An analysis to verify that the function defined in Eq. 49will always be bounded is required.
Descartes rule of signs tell us that f (p∗) will always have two positive real roots, or no real
roots, and will be concave up. Rearranging Eq. 50:

f (p∗) = e∗2‖r̄1 × r̄2‖2
c2

. (51)

Since all the factors on the right hand side of Eq. 51 must be positive, then f (p∗) ≥ 0, and
there can be no real roots. Returning to Eq. 50 and introducing the orbital element partitions
on eccentricity, the desired constraint equation arises:

e2min ≤ c2 f (p∗)
‖r̄1 × r̄2‖2 ≤ e2max. (52)

To check this constraint, the extremes of p∗ are used to find the respective extremes of
f (p∗). It is important to note that if the extremes on p∗ bound the minimum of the function
f (p∗), then the smallest possible value will be f (pfmin). The minimum value of f (p∗) is
given by:

∂ f (p∗)
∂ p∗ = 2p∗ − (1 − e20)(r2 + r1) (53)

0 = 2pfmin − (1 − e20)(r2 + r1) (54)

pfmin = 1

2
(1 − e20)(r2 + r1). (55)
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