
 1 

 CUBESAT CLUSTER DEPLOYMENT TRACKING  
WITH A CPHD FILTER 

John A. Gaebler* and Penina Axelrad† 

Clustered CubeSat deployments, where multiple CubeSats are released over a 

short time span, represent a relatively new and challenging detection and tracking 

problem. The last two decades have seen a growing interest in multi-target, multi-

sensor filtering methods with the filters applied to simulations highlighting ad-

vancements. This work applies the Cardinalized Probability Hypothesis Density 

filter to a realistic tracking scenario, a clustered CubeSat deployment modeled 

after the recent launch of 104 satellites from the Indian PSLV-C37. The filter is 

assessed to gauge the effectiveness under non-ideal circumstances including weak 

observation geometry, realistic measurement noise, sparse data with large time 

gaps between contacts, and nonlinear dynamics. Tuning of the filter is discussed 

in the context of a cluster deployment. Methods of assessing the results are pre-

sented and discussed. Results show that the CPHD filter is capable of estimating 

the location of targets in a cluster launch, but not without several complications 

which bring into question the applicability of the filter to a cluster deployment. 

INTRODUCTION 

To date there have been over 600 CubeSats successfully launched into orbit‡. The most recent 

deployment being an Indian PSLV-C37 mission that released 104 satellites (which included 88 

Planet Labs 3U CubeSats) into space on February 15 2017.  This clear industry trend toward in-

creasingly large deployments of small satellites poses a new challenge for space object tracking 

and space traffic management. The goal of this work is to investigate multi-target tracking algo-

rithms and the sensor configurations that will provide timely and accurate tracking solutions of a 

clustered deployment scenario without direct communication with the satellites. 

Over the last few years CubeSat missions have reported on the difficulty of relying on Two Line 

Elements (TLEs) provided by the Joint Space Operations Center (JSpOC) early in the mission1,2. 

Researchers and industry professionals have begun advocating policy changes to push CubeSat 

developers toward adding navigation aids, in the form of ID beacons or reflectors, to make Cu-

beSats easier to track 3,4. On the forefront is Radio Frequency Identification (RFID) whereby each 

satellite emits a unique beacon4. Beacons will aid in the correlation of observations to the correct 

satellites. To make CubeSats easier to track there are recommendations to install corner reflectors 

or reflective tape, both for radar and optical wavelengths5. Beyond hardware changes and additions 

to the CubeSats, there are also policy recommendations to control mission parameters, such as 
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restricting CubeSats to orbital altitudes less than 500 km, or requiring maneuverability if operating 

in high risk regions6.  

A policy that has helped reduce the time to perform initial tracking of CubeSats has been the 

sharing of tracking and identification data. JSpOC has a sharing program to ingest operator data to 

aid in proper identification of satellites1,3. The most useful data that can be shared with JSpOC 

comes from GPS derived solutions of the CubeSat positions. GPS can provide very accurate posi-

tion estimates, but to downlink their GPS solutions, the CubeSats must still be contacted for the 

first time using tracking data provided by other means. 

From the point of view of government sponsored Space Situational Awareness (SSA) activities, 

the focus is on tracking all space objects, irrespective of cooperation or compliance by satellite 

operators. It is toward this end that the current work evaluates the capabilities of multi-target multi-

sensor estimation algorithms relying on ground based observations without the benefit of onboard 

navigation aids, tracking tags or satellite operator provided data.  

Robust tracking in cluttered scenarios will depend on tracking algorithms that can handle mul-

tiple targets and observation types simultaneously. New methods are being developed around prob-

abilistic association and hypothesis testing. Reference 7 discusses the importance of multi-object 

filtering techniques in SSA. Multi-target methods based on random finite sets are crucial because 

of the difficulty in observing individual CubeSats when there are many in close proximity. Proba-

bility Hypothesis Density (PHD) filters utilize the probabilistic likelihood of objects being present 

at particular locations in the state space. This work studies the Cardinalized PHD (CPHD) filter. 

The CPHD has the benefit of estimating the cardinality, or number of targets present. There is a 

major disadvantage however. The CPHD is strictly speaking, an estimator. It does not track specific 

targets (labels). There are more advanced filters in the literature which include labels and therefor 

can be correctly called trackers, such as the Generalized Labeled Multi-Bernoulli (GLMB) filter8.  

This work starts with the CPHD, since from the point of view of the SSA establishment, the 

need is to know where objects are located. The effectiveness of the CPHD filter on a realistic and 

complex early mission tracking problem assuming uncooperative satellites is investigated. This 

work serves as a precursor to future efforts to develop robust tracking and detection strategies for 

the deployment of multiple CubeSats. Future work will test the capabilities developed here against 

labeled multi-target filters. 

CLUSTERED DEPLOYMENT SCENARIO 

The February 2017 launch of 104 satellites serves as the basis for this study. Although the full 

launch included a variety of satellite types, we focus on the 88 Planet Labs Flock III Cubesats that 

were deployed.  The simulation includes 89 unique objects, the “Doves” plus the deployment ve-

hicle. Lacking access to detailed operational data for this commercial launch, aspects of the de-

ployment strategy were inferred from articles and videos posted of the launch*. From the publicly 

available information, we constructed a representative simulation. The simulated deployment strat-

egy is composed of two simultaneous launches every 2 seconds in opposite directions (starting in 

the + and – local velocity direction of the launch vehicle) with a 10 second gap after every 10th pair 

until all 88 Doves are deployed. Thus, half of the Cubesats are deployed in the forward direction 

relative to the deployer velocity, while the other half are launched in the backward direction, caus-

ing there to be two distinct clusters of Cubesats slowly separating due to natural orbital dynamics.  
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The Keplerian elements of the deployment vehicle are given in Table 1. Deployment is assumed 

to use compressed springs to impart the needed delta-velocity (DV). Assuming the deployment 

system was similar to a Poly-Picosatellite Orbital Deployer (P-POD), a nominal value of 1.5 m/s 

DV was used for all deployments9. The actual deployment vehicle’s spinning motion about the 

angular momentum vector adds complexity to the scenario. This is modeled as a slow rotation from 

the initial orientation in the along-track direction, towards a final orientation in the radial direction 

at the end of the deployment phase. Hence the Cubesats have velocities imparted in both the in-

track and radial directions relative to the deployer. 

Table 1: Keplerian orbital elements of deployment vehicle 

Semi-major 

axis 
Eccentricity Inclination 

Right-ascension of 

ascending node 

Argument of peri-

gee 

6869.9 km 0.00132 97.6° 108.1° 216° 

 

Uncertainties are added at several stages of the deployment during a filter run. The initial con-

dition of the deployer is randomly perturbed using a prescribed Radial, In-track, Cross-track (RIC) 

covariance with a sigma of 5 meters in positions and 0.5 mm/s in velocities. A rotation rate error 

of 1% is applied. Finally, variations in the DV are applied as random 1% errors in the magnitude 

of the velocity relative to the rocket body.  To test and tune the filter, the motion of all Cubesats 

after deployment is assumed to be purely Keplerian.  

SIMULATION OBSERVABLES 

Focusing on the SSA aspect of tracking an uncooperative deployment, U.S. radar tracking sta-

tions are simulated. Three stations were chosen to include in the simulation located at: Eglin AFB 

in Florida, Shemya Alaska, and Cavalier AFB in North Dakota. Table 2 lists the Field of View 

(FOV) and noise statistics assumed for each station10. Three measurement scenarios are compared 

with range only, angles only, and the combination of range and range-rate. It is assumed that angle 

measurements are given as an azimuth and elevation pair. To ease implementation, the same noise 

parameters are used for each sensor, with range noise set at 30 meters and angle noise at 0.014°. 

Neither measurement type gives direct information about the velocity components. For accuracy 

comparison purposes, range rate was also included in this study, even though radar stations typi-

cally do not provide this measurement type. The range-rates are assumed to have noise at 5 cm/s 

levels.   

Table 2: Radar station FOV limits and noise statistics 

 Field of View Noise Statistics (from Vallado) 

Site  

Location 

Range 

(km) 

Azimuth 

(deg) 

Elevation 

(deg) 

Range  

(m) 

Azimuth 

(deg) 

Elevation 

(deg) 

Eglin FL [100 , 3000] [155 , 205] [10 , 35] 32 0.0154 0.0147 

Cavalier ND [100 , 3000] [313 , 63] [10 , 50] 28 0.0125 0.0086 

Shemya AK [100 , 3000] [289 , 349] [10 , 50] 2.9 0.054 0.053 

 

Figure 1 displays the radar station and FOV geometries. The deployer is in a polar orbit, and 

will cut across the U.S. from North to South on in the first orbit, being observed by Cavalier AFB 

first. The data throughout this report are presented during critical phases and color coded consist-

ently. Blue shows the deployment phase occurring 75 seconds after injection. Orange is the first 

contact occurring 10 minutes after deployment and lasting for 2.5 minutes. Yellow is the second 

contact an orbit later (93 minutes), lasting only a few seconds. It is in the far left section of the 
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Cavalier FOV in Figure 1. Not all the targets are in the FOV simultaneously during this contact. 

The third contact (purple) occurs several orbits later (4.7 hours) from Shemya and lasts for one 

minute. Finally, the fourth (green) contact is from Eglin 4.2 hours later and lasts 3 minutes.  

 

Figure 1: Location of radar stations and the respective sensor fields of view (FOV) 

CPHD IMPLEMENTATION 

For this study, a CPHD filter was implemented in MATLAB based on Vo [13] and incorporating 

the logarithmic form of the equations to insure numerical accuracy for the relative large number of 

targets (89) considered.  Modifications were made to only perform measurement updates when one 

or more objects are within a sensor FOV.  We also incorporated the approach proposed in [14] to 

allow the assigned probability of detection to be dependent on whether the target is expected to be 

within the sensor FOV.   

Finally, for this initial study of acquisition and tracking of objects in the Cubesat cluster deploy-

ment scenario, we neglected the possibility of birthing, spawning, and clutter in the CPHD filter.  

The justification for this is approach is that all the ground-based observations are expected to be 

taken after all the Cubesats have been deployed, and the duration of the scenario is short enough 

that new objects are unlikely to appear during this time.  Clutter was ignored to get an idea of the 

best possible performance that could be achieved.  Once incorporated it can be expected to degrade 

the overall performance.   

SCENARIO DISCUSSION 

Several aspects make this a challenging and interesting scenario for study. Each Cubesat is de-

ployed with a DV of only 1.5 m/s, with 2 seconds separating deployments within the same group. 

Such small perturbations do not produce sufficient separation distance to insure that the ground 

sensors can make distinct measurements 10 minutes later at the time of the first contact. Specifi-

cally, in our simulation, the minimum separation distance of any two Cubesats at the start of the 

first contact was found to be only 16 m, with a maximum separation of 2.1 km.  These objects are 

assumed to be tracked from the ground with relatively coarse sensors.  Range measurement noise 

is modeled as having a standard deviation of 30 m and angle measurement noise is assumed to be 

0.014 deg.  The latter maps to approximately 400 meters of error when the CubeSat’s trajectory 

first enters the radar station FOV at low elevations.  The 89 object simulation produces 78 pairs of 

Cubesats with separation distances within the ranging uncertainty of 30 meters, and 1,014 pairings 

with separation distances less than angle uncertainty of 400 meters.  

Figure 2 shows the separation distances between each object at contact 1. The data plotted con-

siders every target to every other target, hence the symmetry in the plot. Red lines are overlaid at 
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30 meters and 400 meters - the measurement noise floor due to range and angle measurements, 

respectively. The bands between 1.6 and 2.1 km show the separation between the two clusters; that 

is, those ejected in the deployer forward-velocity direction versus those in the anti-velocity direc-

tion. The single dotted line through the middle (around 1 km) is the deployer which is in between 

the two clusters. Along the bottom of the plot are the separation distances within a cluster, where 

the thick bands are an artifact of the 10 second delays between groups. Both clusters traverse the 

U.S. immediately after launch directly through the Cavalier FOV; however during this pass, the 

Cubesats are so closely spaced that they are very difficult to isolate with the ground sensor meas-

urement accuracies assumed here.  

 

Figure 2: Relative distances at the start of Contact 1.  

Another element of this scenario that makes estimation difficult is the sparse measurements. 

The second contact occurs only one orbit after deployment. While this might be expected to be 

ideal timing for observing the newly launched satellites; unfortunately, the cluster just skirts the 

FOV of the Cavalier station. Hence, at each time step, only a handful of the satellites are observed. 

This demands a variable probability of detection for objects tracked by the filter. This can have a 

detrimental effect on the cardinality calculations if the probability of survival is set too low. Even 

though all the objects may be observed during the second contact, the cardinality may drop because 

all the objects are not observed simultaneously.  

The third contact is 4.7 hours later. By this time the Cubesats have spread out sufficiently above 

the noise floor for range measurements. The minimum separation is 34 meters with a maximum of 

203 km between the two clusters. Figure 3 highlights the cluster separation in radial and in-track 

directions. There are still 52 pairings with separations less than 400 meters. At this point the meas-

urements can be more effective, because the objects have sufficiently spread apart allowing better 

correlations. However, the separation benefit is tempered by growth in the state errors and uncer-

tainties due to propagation in the absence of measurements. As a result, the filter can end up incor-

rectly predicting when objects will enter the sensor FOV.   
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Figure 3: Cluster separation through the scenario. At the start of each contact all the ob-

jects are rotated to RIC relative to the deployer. Little cross-track variation is present.  

FILTERING RESULTS 

This section presents the results of filtering the three measurement scenarios. Table 3 provides 

the apriori uncertainties and filter tuning parameters used to generate the results. 

Table 3: Apriori uncertainties and tuning parameter values used. 

Scenario Parameter Uncertainty 

Apriori state position 5 m 

Apriori state velocity 0.5 mm/s 

DV error 1 % 

Deployer rotation 1 % 

  

Filter Parameter Value 

Probability of survival 0.9999 

Probability of detection 0.985 

Pruning threshold 1e-5 

Merge distance 4 

OSPA 𝑐 value 1 

OSPA 𝑝 value 1 

 

Since the CPHD does not explicitly estimate the state of specific objects, it can be a challenge 

to assess the orbit estimation accuracy. When tracking a single target with an extended Kalman 

filter an analyst typically compares the estimated error residuals with the 3 sigma uncertainty levels. 

However the CPHD filter updates the covariance of the constituent Gaussian components of the 

posterior intensity11. These are, strictly speaking, uncertainties of the PHD intensities and not state 

uncertainties. The uncertainties can only be loosely interpreted as state uncertainties.  

The Optimal Sub Pattern Assignment (OSPA) metric is one tool used to assess the performance 

of a multi-target filter12. See Equation 1, where �̅�𝑝
(𝑐)

 is the OSPA metric of order 𝑝 and cut-off 𝑐. 
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The term 𝑑(𝑐) is the distance between the true and estimated objects positions cut-off at 𝑐. Calcu-

lating the OSPA requires setting these two tuning parameters 𝑐 and 𝑝.  The 𝑐 value can be viewed 

as the point in which it is assumed that custody is lost. A value of 1 km was found to work well for 

this application. The 𝑝 value is set to 1, to allow a direct interpretation of the metric. See Reference 

12 for a discussion of the parameters. 

 �̅�𝑝
(𝑐)(𝑋, 𝑌) ≔ (

1

𝑛
( min

𝜋∈Π𝑛

∑ 𝑑(𝑐)(𝑥𝑖, 𝑦𝜋(𝑖))
𝑝

+ 𝑐𝑝(𝑛 − 𝑚)
𝑚

𝑖=1
))

1

𝑝

  (1) 

Figure 4 shows the OSPA values in the left plot for the three scenarios under study. The figure 

shows that the measurement types have similar performance through the second contact; however, 

after that there are significant performance differences between them. The discontinuities in the 

OSPA values occur because of time gaps between the contacts. At the end of the fourth contact, 

the OSPA values indicate that the angles-only scenario is the worst with respect to estimating the 

number of objects and their tracks while the range and range-rate scenario is the best. This intui-

tively makes sense as the range-rate observations provide direct information about the velocity 

components. Also the angles-only performs the worst because the angle noise from radar stations 

is very coarse at 0.014 degrees.  

 

Figure 4: OSPA values for the three measurement scenarios on left. Number of bad as-

signments for each scenario on right. Data is collapsed in time, with time steps on the x-axis.  

Despite its utility, the OSPA metric does not address all aspects of the tracking problem.  Spe-

cifically it does not fully capture the accuracy of the state estimates with respect to their uncertainty 

or the correct distribution of discrete objects to particular clusters. Uncertainty is not incorporated 

at all in the OSPA calculation. Cardinality errors are included in the OSPA calculation; but there is 

no way with this metric to identify cardinality specific to a cluster. In our scenario there are two 

clear groups of objects, so a correct overall cardinality that does not reflect the number of objects 

in each group can be considered rather limited in its utility. The right plot of Figure 4 shows the 

number of incorrect object assignments resulting in errors from the true positions greater than the 

OSPA 𝑐 value (1 km).  Nonetheless, we rely on the OSPA metric because of the difficulty of cap-

turing useful information for such a large number of objects individually.  

To explore further the individual object results, Figure 5 shows the post-fit residual errors and 

3 sigma uncertainties during each of the four contacts for the angles-only case. The data points in 

Figure 5 are color coded by contact and plotted against observation time step (rather than elapsed 

time). This suppresses the time gaps between the contacts that were described previously in the 
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Simulation Observables section. Since the CPHD does not have labels, estimated targets are asso-

ciated with the true targets independently after each iteration of the filter updates. The assignments 

are taken from the Hungarian method13 implemented in Vo’s published code to calculate the OSPA 

distances 𝑑(𝑐)*.  

Figure 5 does not include position errors for the bad assignments or mismatches shown in the 

right plot of Figure 4. The total number of omitted data points is given in the text box inserted in 

the upper plot of Figure 5.  Mismatched or poor assignments occur because the filter has a tendency 

to output too many estimates in one of the clusters and too few in the other. Then when attempting 

to find unique assignments of estimated targets to each true object in the OSPA calculation, there 

will be some assignments across the gap between clusters. This would produce large outliers, on 

the scale of the cluster separation, which would swamp the intra-cluster positioning errors shown 

in Figure 5.  

 

Figure 5: Post fit residual errors (dots) and 3 sigma uncertainties (circles) for a filter run 

with azimuth and elevation measurements only. Color coded by contact.  

What is shown in Figure 5 provides some insights into the filter performance and scenario be-

havior; namely, when properly assigned within their cluster, most estimated targets are within the 

3 sigma filter uncertainties. The expected growth in uncertainty between observation opportunities 

is present. Zooming in further to look at the residual errors (bottom plot of Figure 5) during the first 

contact shows that there is minimal refinement of the estimated states based on these measurements. 

This makes sense because the angle-only measurements have significant noise and the uncertainties 

map into large errors in the state space, often larger than the actual differences between states of 

the Cubesats within the cluster.  

A deeper investigation of the errors at the beginning of the second contact shows larger error 

growth than was anticipated. The undesirable behavior was due to an inherent deficiency of the 

CPHD filter - that it lacks labels. In the merging step of the filter those components of the Gaussian 

mixture of estimated PHD locations that are close together (found through a Mahalanobis distance 

check) are combined as a weighted average based on the intensities. See the discussion on ‘spooky 

action at a distance’ for more details14.  
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During the third contact (purple data between time step 80 and 98) the uncertainties collapse in 

two separate groups. This is because the cluster launched in the forward velocity direction passes 

through the radar FOV first, thus those estimates are updated first. Then the second cluster passes 

into the FOV around time step 88. 

 

Figure 6: Post fit residual errors (dots) and 3 sigma uncertainties (circles) for a filter run 

with range measurements only. Color coded by contact. 

For completeness, the range-only residual errors are provided in Figure 6. Generally, the results 

and interpretations are similar to those of the previous plots. Here the uncertainties collapse to 

smaller values, under 100 meters at the end versus 300 to 800 meters in the angles-only case. Again 

minimal updating occurs during the first contact. Fewer assignments are ignored in this plot, 439 

versus 619 in Figure 5. With the less noisy range measurements, the CPHD filter is able to estimate 

more targets in the correct cluster.   

 

Figure 7: Post fit residual errors (dots) and 3 sigma uncertainties (circles) for a filter run 

with range and range-rate measurements. Color coded by contact. 
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Lastly the range and range-rate case is provided in Figure 7. Here the uncertainties are updated 

to very small values, under 50 meters by the end of the scenario. Only 139 bad assignments are 

omitted in the position error plot. Unlike the previous two cases where there was minimal improve-

ment during the first contact,  with range and range-rate measurements there is enough resolution 

to allow updates during the first contact as can be seen in the zoomed in lower subplot (orange 

section).  

TUNING DISCUSSION 

An important aspect of this work was understanding the tuning of the filter. Several lessons 

learned are discussed in the following.  

The probability of survival specified in the CPHD significantly influences the cardinality pre-

diction. Setting the value too low causes the cardinality to drop quickly, especially when observa-

tions are sparse. If all of the targets remain in the FOV this issue is avoided. But for a realistic 

clustered deployment this assumption doesn’t always hold, as demonstrated by the second tracking 

interval in our simulation. Another concern that arises when contacts are spread out over several 

orbits, is that the survival probability is not specified as a function of time interval. The nominal 

prediction calculation does not take into account any difference between a 10 sec separation versus 

a 4.7 hour separation between measurements. It seems reasonable that the survivability should be 

influenced by either the time between updates or possibly based on the state uncertainty.  That is, 

one might assign a lower probability of survival to a less certain target. 

Probability of detection threshold also becomes an issue in sparse data sets. The CPHD imple-

mentation must include variable detection probabilities in sparse data sets. If measurements are 

sparse then every measurement is important. The simplest implementation is a binary switch based 

on whether the estimated target is in the FOV. It was noticed that there was better associations 

made when the detection probability was set to a lower value, however the cardinality would suffer 

by being over estimated if set too low. A detection probability of 98% represented a break point 

for our simulation. With a value too low the filter would output more estimates, which increased 

the chances that there would be at least 44 estimates output from each of the two clusters. This 

allowed there to be fewer bad assignments in the error plots. However, there were also estimates 

that were not associated with true objects. Additional rigorous study of the effects of varying the 

detection probability are warranted. 

Estimated targets are identified through the intensities. The sum of the intensities should be 

equal to the cardinality. An interesting behavior of the intensities is that there is no mathematical 

requirement that they be binary. For example, there may be intensities closer to 2 implying that 

estimated state should be counted twice. Under some circumstances this will also make it impossi-

ble for the filter to output the number of unique targets that the cardinality indicates should be 

present. A strategy to mitigate this effect is to set the estimated cardinality to the minimum of either 

the predicted cardinality, or the number of unique intensities (estimated states) present.  

Another phenomena of the filter is the ‘spooky action at a distance’ problem14. There are a lot 

of intensities in the Gaussian mixture implementation. A merging step is typically implemented 

which will decrease the number of intensities output by the filter. The merging step creates a 

weighted average estimated state to be output, thus creating the spooky action problem. One pro-

posed idea to deal with the spooky action is to split the multi-target state into non-interacting pop-

ulations, which could also aid in the identifying the correct number of estimates in both clusters15.  

The OSPA 𝑐 value should be set somewhere between the separation distances between the tar-

gets and the maximum value that still allows one to claim custody of the target. In the Cubesat 
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cluster deployment scenario, the distance between two Cubesats may be as small as several meters, 

and as large as hundreds of kilometers. The results presented were generated with a 𝑐 value of 1 km, 

which limits the maximum contribution of any one assignment to this level.  In comparing results 

for different 𝑐 values, we found that setting the 𝑐 value lower results in a few nearly perfect assign-

ments where they exist, while everything else is poorly assigned. Higher 𝑐 values strike a balance 

with the bulk of the assignments being good, and only a few poor mismatches. Adjustment to the 

𝑝 value was not assessed in this work. 

CONCLUSIONS 

This work focused on the ability of a CPHD filter to estimate the state of objects present in a 

clustered environment based on a realistic Cubesat deployment scenario. In general, the CPHD 

filter is able to estimate the objects present in two separate clusters of Cubesats. With angle-only 

measurements the noise is so large that estimated states are hundreds of meters in error from the 

truth. Using range-only measurements the final errors are within tens of meters. Since the minimum 

true separation of objects at the end of the scenario is 40-50 meters, range measurements are nec-

essary to provide the resolution to identify individual objects.  

For both measurement types, the earliest possible contact observing the objects is not providing 

useful data because the objects are still too close together. To obtain useful observables there needs 

to be sufficient time for the natural effects of the dynamics to spread out the objects. The earliest 

contact at which respectable track estimates could be provided under this type of scenario is at least 

10 hours later, at the end of the fourth contact. To provide quality tracking sooner would require 

changes to the deployment strategy. There would need to be longer spacing in time between de-

ployments and/or larger velocity magnitudes imparted to the Cubesats. If range-rate or Doppler can 

be provided as an observable then measurements are more useful early on in the mission for object 

differentiation. 

This scenario highlighted the complications that arise from tracking only from the ground with 

sparse, imprecise measurements. Situations where all the targets are not in the FOV simultaneously 

complicates the cardinality solution and exposes some aspects of the CPHD which may be unde-

sirable for space object tracking. While the CPHD can handle this scenario, there are several issues 

hampering the effectiveness for clustered deployment of space objects. The lack of labels makes it 

difficult to assess the filter behavior with respect to track error. Also the lack of labels allows the 

‘spooky action’ to introduce errors into the filter estimates early in the process. It is also assumed 

that labels would prevent the filter from outputting too few estimated targets in one of the clusters.  

This paper discussed the effectiveness of the tools used to assess filter performance and the 

tuning of the filter’s parameters. The OSPA metric is a convenient tool to judge the filter behavior, 

however it needs to have properly tuned input parameters appropriate for the specific scenario.  In 

our simulation the OSPA values gave little indication that the filter was not properly estimating the 

correct number of objects in each cluster. A check of how many associations were larger than the 

cut-off 𝑐 value did provide valuable insight into the scenario behavior.  Unfortunately, the OSPA 

alone did not fully represent the accuracy of the estimated Cubesat states.  

FUTURE WORK 

The next step for our work will be to assess more recent filters developed that include track 

labels such as the GLMB filter8. This is expected to reduce the errors as well as avoid the spooky 

action at a distance issue.   Future studies will also include more realistic and differentiated dynam-

ics among the satellites. One of the topics of that will be interesting to study is the ability to detect 

maneuvers within labeled multi-target filters. 
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The initial states of the deployer were assumed to be given in lieu of performing initial orbit 

determination. This was done to concentrate on the filter performance with respect to the number 

of objects tracked, observation types, and cadence effects. Future work will include implementation 

of an initial orbit determination algorithm with the tracking algorithm. 
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