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High temperature pressure sensing is desirable for a broad range of applications
such as structural health monitoring of space vehicles and control of combustion
processes; however, limited materials for sensor design can sustain temperatures
above 1000◦C while under time-varying pressure. A sapphire based optical pressure
transducer has been proposed for measuring pressure at temperatures approach-
ing 1600◦C. Manufacturing such sensors has focused on picosecond laser machining.
Current research has produced models which can predict ablation depth for longer
(ns) pulses and shorter (fs) pulses but there is an underwhelming amount of research
focusing on predicting and understanding the mechanics of picosecond pulses. We
put forth a model for laser ablation using Maxwell’s equations and a sharp inter-
face limit of the Allen-Cahn equation and compare different constitutive laws which
couple the two equations together. The proposed modeling results are compared to
laser machining experimental data on sapphire to illustrate key material parameter
uncertainty and sensitivity to the laser machining process. Bayesian uncertainty
quantification is used to help validate the approximations within the constitutive
equations.

I. Introduction

High powered laser-sapphire interactions have long been of interest to those studying fundamental physics.
This research has found numerous engineering applications including microfluidics, microsensors, optical win-
dows, abrasion resistant mechanical contacts, buffer materials and high power laser construction.1–3 There-
fore, numerous computational and experimental studies have been performed regarding milli-, micro-, nano-,
pico- and femtosecond laser ablation. The first step of light-matter interaction is non-thermal absorption
(electron excitation) through either multiphoton ionization, defect allowed single-photon ionization or inverse
Bremsstrahlung.1, 4 Only multiphoton ionization is allowed in pristine equilibrium sapphire on the basis of
sapphire’s large bandgap energy of ≈ 8.8eV.5 Absorption is followed by complex material processes. In
general this secondary process is classified as either photothermal (pyrolytic), photochemical (photolytic) or
photophysical (both thermal and chemical). This classification is difficult because it can depend on many
different parameters including laser pulse duration, fluence, material properties and material defects.6 Con-
ventionally, pulse length is considered the leading determinant of classification.7 However, experimental
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measurements have shown that sapphire is unconventional.8–12 Millisecond pulses have been quantified to
produce thermal melting.5 Nanosecond pulses ablate via electron sputtering,8 a photochemical process. This
is concluded from temperature measurements of the ablation plume.9, 10 Faster pico- and femtosecond pulsed
laser-sapphire interactions have proven to be more complex.

The complexity of pico- and femtosecond pulsed laser interaction is strongly dependent on material
defects. Defects play a large role in laser induced damage of dielectrics.13 Nowhere can this be seen more
clearly than in sapphire’s two ablation phases: the gentle phase and the strong phase.8 Experimental results
have suggested that the transition from the gentle to strong phase is due to the number of defects and
inclusions in the material.8 The gentle phase is characterized by a lower rate of removal and a polishing
surface effect while the strong phase has a significantly larger rate of removal and tends to have a rough
surface finish.11 Although separate gentle and strong phases do not generally exist in other dielectrics,12

these materials still see huge variability in ablation depth and threshold due to defects.13 The gentle phase is
considered to be a photochemical effect: either Coulomb explosion or particle vaporization while the strong
phase is considered to be a photothermal effect, specifically phase explosion.11, 14 This separation into gentle
and strong phases works well when the laser pulse is τpulse . 4ps; however the physical characteristics begin
to blend together when τpulse & 4ps.11 This leaves classification of picosecond lasers an open question.

In this paper, we put forth a model for laser ablation based on Maxwell’s equations and a phase field
formulation in the sharp interface limit. The equations are then coupled through constitutive laws which
contain uncertainties associated with the laser ablation process. Section II presents the underlying equations
used to represent laser ablation. Section III presents numerical approximations, implementation, uncertainty
analysis and results. Section IV presents the conclusions.

II. Governing Equations

II.A. Material Kinetics

The kinetic relations governing light-matter interactions of sapphire start with a phase field or diffuse interface
model that tracks the interface between air and the solid material.15 This is described by the Allen-Cahn
equation

β
∂ρ

∂t
+

∂Σ

∂ρ
=

(

∂Σ

∂ρ,i

)

i

+ γ (II.1)

where ρ is a scalar parameter governing the underlying electronic structure of the material, Σ is the stored
energy per undeformed volume, and γ is an external potential that forces the material from a low energy
crystal state and to a higher energy excited state. A more general framework that defined electronic structure

vector order parameters is given by Nelson.16 Lastly, gradients on the order parameter
(

ρ,i =
∂ρ
∂xi

)

are

included to accommodate surface and interface energy between sapphire and air.
The stored energy is defined as a function of the order parameter and its gradient. This approximates

the material behavior in terms of its electronic structure as an effective density. Since no mechanical loads
are directly applied during laser machining we neglect the internal stress effects on the electronic structure
evolution. The stored energy then takes the form

Σ =
a

4
ρ2(ρ− 1)2 +

a0
2
ρ,iρ,i (II.2)

where a is the Landau parameter governing the strength of the atomic bonds in the solid and a0 is a gradient
parameter governing gradient energy.

In the limiting case, we consider a sharp boundary by setting a0 to 0. This reduces the partial differential
equation (PDE) in (II.1) to the following ODE which needs to be solved at every point

β
∂ρ

∂t
= −a(ρ− 1)(ρ−

1

2
)(ρ) + γ (II.3)

.
The external potential, γ in this model, is due to the light source. Its effect on electronic structure

evolution requires solving the electromagnetic field associated with light. These fields are described in the
following section which is followed by methods to couple the fields to laser ablation via γ.
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II.B. Electromagnetics

The phase field equation equation is coupled with Maxwell’s time dependent field equations using the form

∇ ·D = ρf ∇×E = −
∂B

∂t

∇ ·B = 0 ∇×H = Jf +
∂D

∂t

(II.4)

where E is the electric field, B is the magnetic induction field, ρf is the free charge, D is the electric
displacement, H is the magnetic field, and Jf is the free current. Assuming a homogeneous isotropic linear
media, the constitutive relations include

D = ǫE, H = 1
µB, J = σE (II.5)

where ǫ is the dielectric permittivity, µ is the material permeability and σ is the electrical conductivity.
Substitution of (II.5) into (II.4) leads to

∇
2E = µǫ

∂2E

∂t2
+ µσ

∂E

∂t

∇
2B = µǫ

∂2B

∂t2
+ µσ

∂B

∂t

(II.6)

An analytic solution for plane waves traveling in the x direction of (II.6) is

E = E0e
−κxei(k̄x−ωt) (II.7)

where κ is the attenuation factor which is related to the skin depth by d ≡ 1
κ where d ≈

√

2
ωσµ0

, k̄ ≈
√

ωσµ0

2

is the wave number.17 The nonlinear Beer type approximation is given by

∂〈|E|〉

∂x
= −κ〈|E|〉 (II.8)

where κ = κ(ρ) A Beer Law relation derivation can be found in any number of textbooks on electromagnetic
wave propagation, see for example.17 The nonlinear form can be justified by the similar forms found in the
literature.6, 18, 19 Alternatively, if we treat our space as a series of different materials of length ∆x but with
different absorption coefficients we have, lim

∆x→0

∂<E>
∂x = −κ(x)E.

II.C. Coupling

While both the electromagnetic and material kinetics are well established in the literature, there exists
uncertainty in the nature of their coupling. The equations are coupled in two ways. First through the
driving force γ and second through the attenuation factor, κ.

The driving force is given by the standard equation for the electromagnetic force

γ = |qE| (II.9)

where q is the charge density.16 This represents a formulation based on the forces applied to the electronic
structure.

The total charge density is given by a Taylor expansion on higher order poles within the material as

q = q0 −∇ · P +∇∇ : Q+ ... (II.10)

where P is the polarization and Q is the next higher order quadrupole moment. The free charge is denoted

by q0. During laser ablation, insulators such as sapphire transition locally to an effective conducting solid
as the material reaches a sufficiently high excited state. This means the terms within (II.10) evolve during
laser ablation.
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The total charge density is therefore written as

q(ρ,E) = q0(ρ,E) + qb(ρ,E) (II.11)

where the bound charge density is qb(ρ,E) = −∇ ·P +∇∇ : Q and q0(ρ,E) is the free charge density.

Expanding q in a Taylor series about |E| = 0 gives

q = q1 + q2|E|+
q3
2!
|E|2 + ... (II.12)

Truncating to first oreder leaves
q = q1 + q2|E| (II.13)

or the scalar form
q = q1 (II.14)

It is uncertain, a priori when one should truncate the series terms.
Since the material transforms from a insulating dielectric to a conducting material during ablation, the

attenuation factor will change as well. We assume κ depends on ρ as follows

κ(ρ) =











0 ρ ≤ 0

(2κ1 − 4κ2)ρ
2 + (4κ2 − κ1)ρ 0 < ρ < 1

κ1 ρ ≥ 1

(II.15)

where κ1 is the room temperature, undamaged absorption coefficient of sapphire, κ2 is the absorption
coefficient at ρ = 0.5 due to electronic structure changes in the excited state. The motivation for the
complicated attenuation factor is as follows. The maximum value of κ needs to be large enough such that
the skin depth is on the order (or smaller) than the ablation depth. Otherwise E is approximately uniform
throughout the model depth and the model will produce complete ablation or lack thereof through the entire
model. We can therefore conclude that a maximum attenuation of κ > 107m−1. While experimental data
on sapphire is limited for this particular parameter, we can estimate κ1 < 10−3cm−1 for λ = 355 nm.3, 20

The attenuation factor, κ is generally a non-trivial function of other material parameters. Different
models have been created for approximating κ. One approximation based on optics in linear dielectrics
crystals is given by

κ ∝ βq2 (II.16)

where q is the effective charge and β is a damping parameter.17 In this case, we have the effective charge q
evolve as

q(ρ) =











0 ρ ≤ 0

(2q1 − 4q2)ρ
2 + (4q2 − q1)ρ 0 < ρ < 1

q1 ρ ≥ 1

. (II.17)

Since there is uncertainty in the validity of these approximations, we will use Bayesian statistics to judge its
relevance in predicting laser ablation of sapphire.

II.D. Summary

Due to the amount of uncertainty in the coupling of the equations, two different constitutive models are
considered.� The first model uses the nonlinear Beer attenuation of the field, electronic structure evolution and a

constant q with varying κ based on (II.15).� The second model uses the nonlinear Beer relation, the electronic structure evolution equation, and a
varying q with κ based on q and β as given by (II.16).

The models are referred to as the standard force model and the coupled force model, respectively, where the
latter model includes coupling between parameters in (II.16). An overview of the different models is given
in Table 1. Note that H(x) is the Heaviside function in several functions listed in the table.
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Table 1. Summary of models tested. Parameters which are unmentioned are assumed to be deterministic. Parameters
in the left column are treated as random parameters.

Name Forced Model

Material evolution β ∂ρ
∂t = a(ρ− 1)(ρ− 1

2 )(ρ)− γ

Electromagnetics ∂〈|E|〉
∂x = −κ〈|E|〉

γ = |qE|

θ = [q, κ1, κ2, a, β] q = qH(ρ)

κ(ρ) =











0 ρ ≤ 0

(2κ1 − 4κ2)ρ
2 + (4κ2 − κ1)ρ 0 < ρ < 1

κ1 ρ ≥ 1

Name Coupled Force Model

Material Evolution β ∂ρ
∂t = a(ρ− 1)(ρ− 1

2 )(ρ)− γ

Electromagnetics ∂〈|E|〉
∂x = −κ〈|E|〉

γ γ = |qE|

θ = [q1, q2, a, β] q(ρ) =











0 ρ ≤ 0

(2q1 − 4q2)ρ
2 + (4q2 − q1)ρ 0 < ρ < 1

q1 ρ ≥ 1

κ = βq2

III. Numerical Approximation and Simulation

In all examples we use a finite difference approximations to solve the governing equations. In the case
where the original equations are reduced to an ODE, a forward Euler is used for the nonlinear equation while
a backward Euler is used in the linear case.

III.A. Numerical Implementation

The numerical implementation of the nonlinear Beer relation in (II.8) is given by a backward Euler scheme

Ei+1 =
Ei

1 + κ∆x
(III.1)

which has been verified against theory using the value κ = 5× 108 m−1 along with ∆x = 100 nm
4096 to provide

sufficiently low errors.
The sharp interface model given by (II.3) is implemented using a forward Euler scheme

ρi+1 = ρi +
−a∆t

β
(ρi − 1)(ρi −

1

2
)(ρi) +

−|γi+1|∆t

β
(III.2)

where superscripts represent the time step. Figure 1 shows results converge to the equilibrium values of
ρ = 0 and ρ = 1 when E = 0 and the initial value for the density was a linear function of x. The results
illustrate converengence to a sharp interface at x = 1.

The initial conditions for ρ in the remaining analysis is

ρ =

{

0 x < 0

1 x ≥ 0
(III.3)

which describe air for x < 0 and sapphire for x ≥ 0. Note that Figure 1 does not represent these initial
conditions, but instead illustrates that the initial condition in (III.3) is an equilibrium state.

The following approximation is used for γ

γi = |qEi| (III.4)

where the superscript, i, denotes the time step.
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x

0 0.5 1 1.5 2

p
t

-0.5
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0.5

1

1.5

t =000

t =040

t =080

t =120

t =160

t =200

t =240

t =280

t =320

t =360

t =400

t =440

t =480

t =520

Increasing Time

Increasing Time

Figure 1. Numerical approximation for verification of our sharp interface model. This figure does not show the initial
conditions of (III.3). Here, t represents the number of time steps.
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Figure 2 shows convergence to a singular ablation depth value as both ∆t and ∆x = l
N decrease. N

is the number of points and l is the model length. Sufficient convergence is found for ∆t = 1 fs and
∆x = 1

4096x0
≈ 24.4 pm where x0 is the model length x0 = 100 nm. This temporal and spatial step size is

used throughout the rest of the analysis.

10
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(a) Number of spatial points, N
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(b) Time step size, ∆t

Figure 2. Convergence of solutions for number of spatial points, N , and time step size, ∆t. The time step is ∆t = 10−15

and N = 4096 unless otherwise stated.

III.B. Uncertainty Quantification

Since the physics involved in laser ablation is highly complex, uncertainty quantification is crucial to judge
and validate the light-matter model predictions. Bayesian model calibration is built upon the assumption
that calibration parameters exhibit uncertainty due to model discrepancies and experimental uncertainty.
Therefore, uncertainty analysis provides a parameter distribution based on a sum-of-squares distribution
error between the model and the data in conjunction with a prior density. The resulting likelihoods are then
used to judge the uncertainty of the model parameters based on the difference between measurements and
the model output. Details outlining this methodology are given by R. Smith in Chapter 8.21

The statistical model that will be used in subsequent sections is

sdata(i) = s(i; θ) + ǫi (III.5)

for i = 1, . . . N data points, where sdata is the experimental ablation depth and ǫi is ith observational error.
s(i; θ) is the model response and θ denotes the model parameters. The observation error can include error
due to material difference, processing differences, measurement error and model errors.

Calibration uses Bayes’ relation

P
(

θ|sdata
)

=
P (s|θ)π0(θ)

∫

Rn P (s|θ)π0(θ)dθ
(III.6)

to determine the posterior density P (θ|sdata) which is the probability of having parameters θ given sdata as
the observed experimental data. π0 represents the prior density, i.e. our a priori knowledge of the parameters.
An uninformed prior (i.e. flat prior) is used for all analyses. That is the prior has equal probability across
the entire support. P (s|θ) is the likelihood of the model results matching data given θ. The denominator is
the normalization constant.

For independent and identically distributed (iid) normal errors, the likelihood is given by

P (s|θ) = e−
∑

N
i=1

(sdata(i)−s(i;θ)2/2σ2

(III.7)

where σ2 is the variance of the error which is unknown a priori and will be inferred from the calibration
process along with θ.

There is a large range of model parameter values which map to either the full model depth, x0 or 0
ablation. Therefore, a slight modification of the likelihood function is given as follows

P (s|θ) = e−f(θ) (III.8)
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where f(θ) is

f(θ) =











∞ min(s(i; θ)) ≥ x0

∞ max(s(i; θ)) ≤ 0
∑N

i=1

(

sdata(i)− s(i; θ)2
)

/2σ2 otherwise

(III.9)

This gives a zero probability in the areas where the parameters are not identifiable.
Unfortunately the computational cost of each model run, prohibits looking at very long chains. Therefore,

several iterations of shorter chains typically of 25,000 iterations were used and the posterior density of the
previous chain was used for the initial guess of the next chain. An assessment of the “burn-in” of chains to
a converged posterior density will be included for each model. Uncertainty quantification is implemented in
MATLAB using an algorithm distributed by Marko Laine.22, 23

The results from both of the models will be presented individually. The results begin with a randomized,
uninformed search over a single intensity. A few parameter points are taken from the resulting search based
on a combination of minimizing error over all intensities and physical limits of the material parameters. Some
points are taken based on physical intuition of parameter estimates, while others are chosen strictly because
they have the smallest error over all intensities of an uninformed search. After the initial parameter analysis,
model calibration is performed. The Markov Chain Monte Carlo (MCMC) is implemented numerically use
the Delayed Rejection and Adaptive Metropolis (DRAM)23 algorithm to quantify model uncertainty and
validity in light of experimental results.

III.C. Standard Force Model

As a reminder, the equations for the standard force model are given in Table 1 and key parameters are given
in Table 2. Global search results are presented first in the form of scatter plots. These global search results
are used as a starting point for running MCMC DRAM model calibration. This provides a set of statistical
measures used to assess the predictability and behavior of the model in light of data.

Initially global scatter plots are calculated to give an estimate of the model response as shown in Figure 3.
Scatter plot results are performed on an order of magnitude uniform distribution using

θi ∼ 10U [(b1,b2)] (III.10)

where θ = {a, β, σ1, σ2}, θi the ith element, 10b1 and 10b2 are the minima and maxima of the parameter
space of θi and U(b1, b2) is a uniform distribution on the interval (b1, b2). These plots can be thought of
as realizations of conditional probability. The graphs also represent a coarse search of nearly the entire
parameter space. The large number of values with an ablation depth 100 nm is due to the limit of model
depth which is d = 0.1 µm.

We seek to fit the parameters based on knowledge of the valid parameter ranges plotted in Figure 3.
However all three parameters β, a and q in (II.3) are not identifiable with (II.9) as described by the material
kinetics equation

∂ρ

∂t
=

a

β
(ρ− 1)(ρ−

1

2
)(ρ)−

|qE|

β
. (III.11)

A reasonable value of β = 10−13 Ns
m3 is selected based on the excitation time for electrons in sapphire. In

addition, for values of κ1 ranging from 10−10 m−1 to 105 m−1 the model is insensitive to changes in κ1. Since
we know physically that κ1 is small, κ1 = 10−7 m−1 is arbitrarily chosen. MCMC simulations using DRAM
are then used for parameter fitting and uncertainty analysis. Results are shown in Figure 4 and Table 3. In

Table 2. Key parameters for standard force model

Variable Name Physical Representation

κ1 m−1 Attenuation of light in pristine sapphire

κ2 m−1 Maximum attenuation of light while sapphire undergoes ab-
lation

q C
m3 Effective electrical charge

β Ns
m3 Damping parameter

a N
m3 Landau parameter – effectively governs bond strength
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Figure 3. Global scatter plots for the six material parameters with 100,000 points for the standard force model.
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ā

0 2 4 6 8

q̄1

(b)

ā
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Figure 4. These figures show the convergence of our parameters using a DRAM algorithm. In this case the mobility is
fixed at β = 10−13 Ns

m3
. (a) The chains show the last 75,000 iterations. (b) Posterior densities of the model parameters

(c) Pair correlations (d) Model prediction including 95 % prediction intervals (PI) and 95 % credible intervals (CI).
iterations. Mean parameter values are given in Table 3.

Figure 4, some of the parameter values have been scaled. Specifically κ̄× 109 = κ and q̄1× 10−10 = q1 where
the barred values are shown in the figures.

The time constants for ablation can be estimated using τ = β
a . In the standard force model model

τ = 3.5× 10−3 ps which is smaller than estimations of the electron relaxation time τe ≈ 100 ps.14
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Table 3. Summary of mean and standard deviations from the Monte Carlo Analysis shown in Figure 4. In this case
the mobility is fixed at β = 10−13 Ns

m3
.

Parameter Mean Standard Deviation

κ2 2.2× 109 8.6× 108

a 28 6.8

q1 4.4× 10−10 8.4× 10−11

Local sensitivity results are presented in Figure 5 to complement the posterior densities in Figure 4.
In these figures, the parameters are set to the values presented in Table 3. In each figure only one of the
parameters is varied from results in Table 3 while holding the other parameters at their mean values.
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Figure 5. Local sensitivities of key material parameters about the the mean values given in Table 3 for the standard
force model. The parameter varied in these simulations is given in the legend with all other values held fixed at their
mean values.

III.D. Coupled Force Model

As a reminder, the coupled force model is given by the governing equations in Table 1 and key parameters
given in Table 4. Note that by implementing the constitutive equation, κ = βq2, all the parameters become
identifiable.

It is important to note that the parameters from (II.3) have been scaled by a factor of β0 = 10−13 Ns
m3 as

follows

β̄
∂ρ

∂t
= −ā(ρ− 1)(ρ−

1

2
)(ρ) + |q̄E| (III.12)
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Table 4. Key parameters for coupled force model

Variable Name Physical Representation

q1 Effective electrical charge in pristine sapphire

q2 Effective electrical charge while sapphire undergoes abla-
tion

β Damping parameter

a Landau parameter – effectively governs bond strength

where ā = a
β0
, β̄ = β

β0
and q̄ = q

β0
.
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Figure 6. These figures show the convergence of our parameters through a DRAM algorithm. The chains show the last
50,000 iterations. 200,000 iterations were performed prior to this analysis. Mean parameter values are given in Table
5. (a) The chains show the last 75,000 iterations. (b) Posterior densities of the model parameters (c) Pair correlations
(d) Model prediction including 95 % prediction intervals (PI) and 95 % credible intervals (CI).

Figure 6 shows the results from the MCMC DRAM search. Two important points can be made. First, the
attenuation of light in pristine sapphire for these parameters is κ ≈ 8 m−1 = .08 cm−1 which is a reasonable
parameter.20 When you account for scaling the parameters, the parameter values are not significantly
different from the ones found in the standard force model. The minimal amount of correlation in Figure 6(c)
suggests the constitutive relation κ = βq2 provides more fundamental estimates of picosecond laser ablation
in sapphire. The comparative unscaled values can be found in Table 6. The time constant τ = 4.2× 10−4 ps
is again faster than expected, but similar to the model presented in the previous section.
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Table 5. This table shows the mean and standard deviation from the Monte Carlo Analysis in the results shown in
Figure 6.

Parameter Mean Standard Deviation

a 8.3× 1014 9.8× 1013

q1 4.8 6.5

q2 3.1× 104 3.4× 103

β 0.35 0.0049

Table 6. Table comparing the different parameter values between the two constitutive relations. Note that in the coupled
force model, κ1 and κ2 are calculated use κ = βq2. κ1 was unidentifiable in the first model due to it’s insensitivity.
This explains the discrepancy between kappa1 in the two models. β was unidentifiable in the first model, so the more

relevant comparisons of τ = β

a
and β

q1
are included as well.

Parameter Standard Force Model Coupled Force Model

κ1 (m−1) 10−9 8.1

κ2 (m−1) 2.2× 109 3.4× 108

a ( N
m3 ) 28 8.3× 1014

q1 ( C
m3 ) 5× 10−10 6.5

q2 ( C
m3 ) N/A 3.1× 103

β ( Ns
m3 ) 10−13 0.35

τ = β
a (ps) 2.4× 10−3 4.2× 10−4

β
q1

2× 10−4 7.3× 10−3

IV. Conclusions

In this paper, a sharp interface model for laser ablation is presented. The sharp interface model is defined
in the limit of the phase-field model as the diffusion term goes to zero. Two different formulations based on
the electronic force are provided. The second formulation provides an improved constitutive law to reduce
the number of unidentifiable parameters. Both formulations provide a robust model amenable to direct
correlations with experimental operating conditions which can be used to directly correlate the modeling
with experiments of the ablation process. Both formulations matched data well with a sum of square error
< 5 nm per fluency data point. In general, parameter estimation matched the parameters within their
expected values. The only exception to this is the time constant τ ≈ 3 fs which is significantly less than the
expected relaxation time of electrons ≈ 100ps. The relaxation time only functions as an upper bound for
the correct time constant and it is unclear how τ should relate to this upper bound. Furthermore we noted
that κ ∝ βq2. The actual linear dielectric formula is given by

κ =
Nq2eω

2

2meǫ0c

∑

j

fjβj

(ω2
j − ω2)2 + β2

jω
2

(IV.1)

where N is the number of electrons per unit volume, qe is the electron charge, me is the electron mass, ω is
the laser frequency, ωj is the natural frequency of the jth state, c is the speed of light, ǫ0 is the permittivity
of free space, fj is the degeneracy of jth state and βj is the damping of each state. In the approximation of
ω >> ωj , ω >> βj and that all electrons can be treated as in identical states, this reduces to

κ =
N2q2eβ

2meǫ0cω2
=

q2β

2meǫ0cω2
. (IV.2)

This term gives κ ≈ 580βq2 = β̄q2. Thus is we take β̄ as the value given by the calculations, our time
constant changes to 240 fs. While this increase the time constant, tau is still less than thr upper bound of
the electron relaxation time: 100 ps. While this modification keeps κ constant it affects the material kinetics.
These parameters no longer match data which leaves the appropriate parameter selection an open question.
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We conclude that the model formulations are similar as both models successfully predict laser ablation
on the picosecond pulsed time scale. As such, the second model is recommended as a better choice for future
analysis since it is a simpler formulation in which all model parameters can be estimated from laser ablation
data.
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