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Sensing of pressure at high temperatures is currently limited by melting temperature
and the plastic deformation undergone by silicon based technologies due to brittle to duc-
tile transition.1 Sapphire has been proposed as an alternative sensing material that can
overcome these temperature limitations using photonic methods. In order to manufacture
the sensors, an ultra-short pulsed laser is utilized to machine sapphire as opposed to chem-
ical etching methods used in silicon-based MEMS technology. Here we quantify the change
in mechanical properties of sapphire due to laser machining. Vicker’s indentations were
applied to both pristine and laser machined specimens showing that there is a toughening
effect due to the machining process. The underlying mechanisms associated with tough-
ening were quantified using transmission electron microscopy (TEM) and a single crystal
plasticity model using finite element analysis. The TEM cross-sections illustrated dense
sub-surface regions of dislocations only in laser machined specimens. To further understand
the toughening, finite element modeling of nanoindentations were conducted and compared
with data illustrating complex evolution of the single crystal sapphire material underneath
the nanoindent. The modeling and data comparison suggest hardening occurs locally that
can be associated with an increase in the elastic properties as well as local damage.

Nomenclature

FiK Deformation gradient

T̃IJ 2nd Piola-Kirchoff stress
ρ Damage internal state variable
ξi Damage microforce
η Internal microscopic potential
β Inverse mobility constant
si Slip direction unit vector
mj Slip plane unit normal
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I. Introduction

Sapphire is known for its unique properties including extreme hardness (only natural substance harder
than it is diamond) and high melting temperature (2030oC).2 Sapphire is utilized in both structural and
functional applications due to advantages pertaining to mechanical, thermal, and chemical properties. Re-
sistance to thermomechanical degradation and chemical corrosion makes it an ideal material for applications
in hostile aerospace environments such as rocket nose cones and gas turbine components. Functional ap-
plications make use of its unique electrical, optical, and thermal properties for applications used in lasers
and low scattering optical windows. Its material properties also afford resistance to breakdown from radia-
tion providing opportunities for space applications. Constructional sapphire is used for creation of products
with high mechanical stability such as the supports for the crucible used in the growth of other crystals.
Other uses include shatter resistant windows and insulator substrates layers for high power, high frequency
complimentary metal oxide semiconductor (CMOS) integrated circuits.2

Due to the high melting temperature of sapphire, it is an ideal material for development of optical-
based pressure sensors in high temperature operating regimes such as inside gas turbines and embedded in
hypersonic aircraft control surfaces. Currently, commercial pressure sensors use silicon on insulator (SOI)
technology which requires active cooling to achieve operating temperatures around 1000◦C due to the ma-
terial limitations of silicon. Sapphire based sensors may overcome these limitations; however, this comes
with new challenges in the manufacturing process. Sapphire is chemically inert, which precludes the use
of standard MEMS etching used in silicon based technologies. To overcome this challenge, an ultra-short
pulsed laser machining strategy is employed, but this can lead to microcracking, subsurface damage, residual
stress, etc. To minimize these effects, we investigate mechanical behavior post laser machining to better
understand ideal manufacturing conditions that produce reliable pressure sensors. An important property of
sapphire sensors is the fracture toughness because it affects longevity of components(e.g. a pressure sensor
diaphragm). This is investigated using indentation experiments combined with fracture mechanics and single
crystal dislocation mechanics.

Fracture properties of sapphire have been studied using indentation to determine its fracture toughness
which ranges between 1.5-4.5 MPa

√

m.3 It was also observed that while studying the basal plane of alu-
minium oxide that slip and mechanical twinning can be induced when polished or indented with a sharp
indenter.4 Similar finding were found when looking at sapphire using tensile loading at elevated tempera-
tures.5

One simple experimental tool for investigating fracture mechanics of brittle materials is micro and nanoin-
dentation.3 Indentation mechanics has been extensively developed as a way to quantify the hardness of
materials. This is done by forcing a small indenter onto the surface of another material and measuring the
size of the residual indentation left. It is the most frequently used mechanical test for determining hardness.
There are several reasons for implementing this tool including cost, its non-destructive characteristics, and
extensions to estimate other mechanical properties from the hardness data.6 There are several different kinds
of indentation including Vicker’s, Brinell and Rockwell indenters. One problem with these tests is the lack
of a universal methodology to relate hardness calculations from one indent geometry to another. Because
hardness is not a well defined parameter, it is often the other mechanical properties such as fracture tough-
ness stated above that are of more interest. Fracture in bulk materials can be characterized using several
different techniques including indentation fracture, but there are limited options for use on thin films since
it becomes very difficult to differentiate the contributions from each layer. Nanoindentation tests, however,
are appropriate at this scale. During these tests, both the displacement and load are monitored during
indentation loading and unloading. From this curve, it is possible to estimate the elastic modulus from the
unloading curve as well as various other properties such as activation volume and strain rate sensitivity.
In the present analysis, we use both micro and indentations to provide more insight into the mechanical
behavior of sapphire as a function of single crystal plasticity and laser machining damage.

In the following sections, the methods by which the experimental data was obtained is first discussed
followed by results obtained from the data and modeling analysis. We first use anisotropic elasticity (Stroh’s
formalism9) to confirm the crack tip toughness of pristine sapphire. These results are qualitatively compared
with toughness enhancements due to laser machining. The experiments are then compared to a finite
deformation, dislocation modeling framework to help understand the effect of the damage evolution during
indentation loading and unloading. Concluding remarks are given in the final section.
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II. Experimental Procedure

Commercially obtained R-plane single crystal sapphire are used in all experiments to support the design of
the pressure transducers. Using approximately 9 mm2 sections of laser machined sapphire we apply Vicker’s
indentations with a loading force of 1 kg and characterize several indentations. Some of these indentations
were made at 0◦ and 45◦ relative to the R-plane single crystal cut. Sapphire is non-conductive so a thin
layer of carbon was sputtered onto the sample so that it could be observed in a scanning electron microscope
(SEM). Crack displacements near the tip were then measured by taking high resolution images near the
crack tip.

A 355 nm wavelength picosecond laser was then applied to different specimens to understand how the
fracture toughness differed relative to the pristine specimens. The laser itself has 5 different settings that
can be adjusted. Those parameters include: the affluence (percentage of the laser power), pulse frequency,
scanning speed, number of passes and stepover(indicates the amount of overlap). The laser processing
parameters were: 10 kHz pulse frequency, 10 mm/s scanning speed, 3.8 J/cm2 fluence, 3 passes, and 3 µm
stepover. After the specimens are laser machined, we use the same process as before and image the specimens
near the indentations in the SEM.

The laser machined specimens are furthered analyzed using a transmission electron microscope (TEM).
The TEM (JEM-ARM200cF) is a sub-angstrom spherical aberration corrected transmission/scanning elec-
tron microscope. In order to prepare the samples for the TEM, thin slices about 1 mm-2 mm thick were cut
using a diamond saw. The slices were polished to about 100 µm using silicon carbide polishing pads starting
with 35 µm grit size and finishing with 5 µm grit size gradually stepping down the size as the sample gets
thinner. After it is 100 µm thick, the specimen is then attached to a copper grid and polished further using
diamond lapping film to a thickness of approximately 20 µm starting with 30 µm grit film and finishing
with 1 µm grit film. An ion miller is used in the final step to further polish the sample to a thickness of
several nanometers. Images were then obtained at high resolution to observe the effect of the laser machining
process.

III. Experimental Results

III.A. Microscopy Results

An example of a SEM image of Vicker’s indentations on pristine R-plane sapphire is shown in Figure 1. Cracks
are predominately seen emanating from the tips of the indent. We further analyze the pristine specimen
by quantifying the crack tip toughness using anisotropic fracture mechanics. We apply Stroh’s formalism
to determine the K-field associated with the displacement near the crack tip from zoomed SEM images.
This approach is done to account for single crystal elastic anisotropy. The details of the approach is well
documented elsewhere9 and therefore not repeated here. By comparing the theoretical displacement to the

(a) (b)

Figure 1. (a) Image of 1 kg indent on pristine sapphire at approximately 0◦. (b) Image of 1kg indent on laser machined
sapphire at approximately 0◦. The laser processing parameters were: 10 kHz pulse frequency, 10 mm/s scanning speed,
3.8 J/cm2 fluence, 3 passes, 3 µm stepover.
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Figure 2. (a) Graph of experimental data matched to theoretical crack displacement for indents oriented at 0◦ relative
to the R-plane. (b) Similar analysis for indents oriented at 45◦ relative to the R-plane.

crack tip displacements obtained from SEM images, an estimate of the crack tip toughness can be determined
as is shown Figure 2. It was found that at 0◦ the KIc was 2.2 MPa-m1/2 and at 45◦ it was 2.50 MPa-m1/2.
The corresponding energy release rates were 11.64N

m and 15.25 N
m , respectively. These fracture toughness

values are comparable to ones given by Lawn3 for sapphire which is between 1.5-4.5 MPa-m1/2. Because of
this wide range it is unclear if the anisotropy has an effect on the fracture toughness.

A comparison of the pristine specimens to the laser machined specimens illustrated toughening upon
laser machining as shown in Figure 1(b). No apparent crack formation was observed using picosecond laser
machining. Since the fracture toughness could not be determined from indentations, TEM images were
investigated to quantify if subsurface damage was present and contributing to the enhanced toughness.

Through the use of TEM imaging, we identified characteristics of laser damage as shown in Figure 3.

(a) (b)

Figure 3. (a) Image of region near the surface showing high density dislocation regions at varying depths in the sapphire
with the laser machine parameters: 200 kHz pulse frequency, 200 mm/s scanning speed, 3.8 J/cm2 fluence, 3 passes,
3 µm stepover. (b) Higher magnification of high density dislocation region with the laser machine parameters: 200 kHz
pulse frequency, 200 mm/s scanning speed, 3.8 J/cm2 fluence, 3 passes, 3 µm stepover.
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Figure 4. High Magnification region near the surface of the sample showing polycrystalline-like behaviour.

From tilting the TEM sample, the darker regions in Figure 3 were shown to contain regions of highly
dense dislocations. The depth of damage ranges from a few hundred nanometers to 5 µm. An interesting
phenomenon was observed when viewing the sample at 10s of nm close to the surface. It can be seen in
Figure 4 that there are island-like regions where striations can be seen. These regions are indicative of
polycrystalline-like behaviour. It is unclear if grain boundaries have formed in the sapphire specimen near
its surface. In addition, the regions surrounding the polycrystalline-like areas are believed to be amorphous.
These regions are only found within the first 5 nm from the laser machined surface.

IV. Nanoindentation Model

Based on the electron microscopy and indentation results, a damage model was formulated and nu-
merically implemented using the finite element method to better understand the material physics behind
deformation in pristine single crystal sapphire for future extensions to initial conditions containing laser
machining damage. Aspects of the model governing the evolution of plasticity are adopted from finite single
crystal plasticity theory.10 In the model, a free energy function ψ = ψ(EIJ , ρ, ρ,I) is implemented. This
free energy is a function of the Lagrangian strain EIJ , a damage parameter ρ associated with dislocation
evolution, and its spatial gradient ρ,I . To fit our model, we use experimental data from a nano-indentation
test and compare the force displacement curves from our simulation to those obtained from the experiment.

IV.A. Governing Equations

It was determined numerically that the strain underneath the indentation was finite so the second Piola-
Kirchoff stress is implemented in the equilibrium equations in the Lagrangian frame.12 This is provided
by

T̃JI,J = 0 (1)

where body forces and inertial effects are neglected.
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The equilibrium equations are coupled to a phase field equation describing dislocation evolution in the
single crystal material using

ξI,I − (η − τ) = βρ̇ (2)

which estimates dislocation evolution using the scalar parameter ρ. In this equation, ξI,I governs the diffusion
length between damage zones and pristine material, η is the internal microscopic force that must be overcome
to induce damage, τ is the resolved shear on the slip plane, and β is an inverse mobility constant that
accommodates losses proportional to the time rate of change of the damage, ρ̇.

The diffusion of damage is governed by

ξI = a0ρ,I (3)

where a0 is a phenomenological parameter that is proportional to the diffusion length. The internal micro-
scopic force η is work conjugate to ρ and defined by

η =
∂ψ

∂ρ
= Aρ+Bρ3 (4)

and the driving force for evolution of the damage parameter is

τ = DT̃IJ s̃Im̃J (5)

where A,B, and D are phenomenological parameters, sI is the slip direction,and mJ is the normal associ-
ated with the slip plane. In general, this may be extended to multiple slip systems to quantify nonlinear
constitutive behavior near the onset of plasticity where multiple slip planes may be activated near the same
magnitude of the driving force. Here, we only approximate this behavior by setting the slip direction to 45◦

for a conical indenter using an axisymmetric model in two dimensions. The approximates the true evolution
of dislocation evolution along multiple slip systems in three dimensions. It will be shown this this provides
a reasonable estimation of nonlinear deformation and hysteresis during nanoindention of pristine sapphire.

Since we accommodate finite deformation, it is not possible to use a simple linear superposition of the
elastic and plastic strain. A multiplicative decomposition of elastic and plastic deformation is alternatively
used where the total deformation gradient is F=FeFp where Fe andFp are the elastic and plastic deformation
gradient tensors.10, 13 This results in another set of unknown plastic deformation gradient components that
are determined as a function of the damage parameter ρ. Following Gurtin et al.,10 we introduce the
kinematic relation

Ḟ
p
iK − ρ̇(simj)F

p
jK = 0 (6)

which provides a means to determine components of the plastic deformation gradient F p
iK . In summary, the

three governing equations (1), (2), and (6) are solved simultaneously with the finite element method.

V. Computational Modeling

The software Comsol was used to solve the nonlinear set of solid mechanics equations. The model was
developed in two dimensions by assuming axisymmetric deformation. The strong forms of the governing
equations (1) and (2) are rewritten in the weak form and specified for the axisymmetric case. Starting with
(1) the final weakform is

∫
Ω

−[(
∂wr

∂r
T̃rr +

∂wr

∂z
T̃rz)r

2 + (T̃rr + T̃zz)rwr ]dΩ +

∫
Γ

[(T̃rr + T̃rz)r
2nrwr]dΓ = 0 (7)

∫
Ω

−[(
∂wz

∂r
T̃rz +

∂wz

∂z
T̃zz)r]dΩ +

∫
Γ

[(T̃rz + T̃zz)rnzwz ]dΓ = 0 (8)

where wr and wz are weight functions for the displacement variables in the radial (wr) and z-direction (wz).
Both (2) and (6) are implicitly defined in the coordinate system by their variables. The weak form for (2) is

∫
Ω

[ξIw,I − (η − τ − βρ̇)wρ]dΩ +

∫
Γ

[wρξInI ]dΓ = 0 (9)
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where wρ is the weight function on the damage parameter and the diffusion variable becomes
ξr

r
+ ξr and

ξz in the radial and z-directions, respectively. The weak form for the plastic deformation tensor is

∫
Ω

[(ḞiK − ρ̇(simjFjK ))wiK ]dΩ = 0 (10)

Here wiK is the weight function on each of the non-zero components of the finite plastic deformation gradient.
It is important to note that the dependent variable u (displacement in the radial direction) in the definitions

of the strains used in the model is
u

r
in order to avoid a singularity at r = 0.

The two-dimensional geometry is a rectangle with dimensions 300 µm x 500 µm in the r and z directions,
respectively. The boundary conditions are illustrated in Figure 5(a). Axisymmetric boundary conditions
are applied along the r = 0 axis (left side in Figure 5(a)) and a fixed displacement is applied along the
bottom of the model. It has been shown that a Berkovich indentation can be approximated by an equivalent
conical indentation so that axisymmetry can be utilized.11 For this model, the elastic and plastic properties
were assumed to be isotropic so that the symmetry condition is not violated. The load P along the contact
surface of the indent is solved according to the difference between a prescribed indentation displacement
and the finite element solution and described as follows. Using this approach, the displacments of the finite
element model reasonably follow the indent geometry except near the center point of the indent as shown in
Figure 5(b).

There is also a special boundary condition implemented along the top to approximate the contact me-
chanics of a Berkovich indenter. A virtual indentation is applied to the material to simplify the contact
problem. This is accomplished by applying a load boundary condition on the top surface which depends on
the difference between the prescribed displacement from the virtual indent contacting surface and the actual
surface displacement from the finite element model solution

Fz = k(vFEA − vpre)r (11)

where k is a spring stiffness parameter that can be increased to minimize the difference between the FEA
surface displacements (vFEA) and the prescribed indent displacement (vpre). Due to stability issues, there is
a limit as to how large the spring constant can be increased. The indentation depth used to construct vpre
is larger than the true indent geometry such that the maximum displacement of vFEA matches results from
nanoindentation data. In order to avoid the un-physical phenomenon of a tensile load along the boundary
between contact and a free surface, a constraint is implemented so that the spring forces are never tensile.

Upon numerical implementation and comparison with nanoindentation data, it was determined that the
amount of hysteresis observed experimentally could not match data without significantly decreasing the
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Figure 5. (a) Boundary conditions applied to finite element model. There is zero displacement in the r direction along
the axis of symmetry and fixed along the bottom. There is then a virtual indentation applied on the top with a load.
(b) Graph of difference in the prescribed displacement and actual displacement in the model.
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Figure 6. (a) As α increases the peak load increases while keeping the hysteresis relatively constant. (b) As D increases
the peak load stays almost the same while being able to increase the hysteresis in the force displacement curve.

maximum load. In order to match both the hysteresis and maximum load, the shear modulus was assumed
to increase as a function of the damage according to

G = G0(1 + αρ2). (12)

This allowed for the max load to remain relatively constant as the amount of damage and subsequently, the
hysteresis, increased such that it could be matched to experimental results.

To better understand the effects of the model parameters, a local sensitivity analysis was conducted.
It was determined that the magnitude of parameters A and B strongly influence model stability and also
influence the amount of hysteresis. Once model stability was achieved, it was possible to fit data by holding
A and B constant and varying α and D. It can be seen in Figure 6 how the curves are affected by changing
one parameter while the other parameters are held fixed. The trend for both parameters is as expected. As
α increases, so does the maximum load and as D increases, so does the amount of hysteresis.

An example of one of the FEA solutions is shown in Figure 7. It can be seen that there is permanent

(a) (b)

Figure 7. (a) The FEA solution showing the plastic strain in the z direction (Ep

zz
) at the maximum load. (b) The FEA

solution illustrating the residual Ep

zz
after the load has been removed.
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Figure 8. Comparison of force displacement curves from nanoindentation experiment and numerical simulation

deformation after the load is completely removed as indicated by the remanent deformation and color plot
of plastic strain in the z-direction, Ezz . This is also shown in the load-displacement curve for one set of
parameters in Figure 8. Since the phenomenological parameters A, B, and D all have a significant influence
on damage evolution but not hardening, this provides evidence that the increase in elastic properties (here
proposed to be the shear modulus G in Eq. (12)) is a strong indication that there are two mechanisms
occuring during the indentation process.

VI. Conclusion

Materials characterization and modeling of both pristine and laser machined specimens has illustrated
that laser machining has significant effects on the fracture behavior and subsurface damage. The laser
machining is found to toughen the sapphire. It appears that this is due to the high density dislocation region
caused by the laser machining process which vary in depth from 0.5 µm to 5 µm. To better understand
this behavior in brittle single crystal materials, a model was developed using a scalar order parameter to
approximate dislocation formation and evolution. It was assumed that the majority of slip occurred at
45o to the R-plane crystal surface. This phenomenological model illustrated that parameters associated
with changes in the elastic properties (via α) and the amount of plasticity (via D) are most sensitive to fit
the model where the other two parameters associated with dislocation energetics (A and B) are important
for numerical stability. From the results of the simulations, we conclude that there are two mechanisms
governing deformation during nanoindentation of pristine sapphire. The first is the compression of the
atomic structure causing an effective hardening that can be associated with a localized increase in the shear
modulus. The second is the formulation of plasticity when the local stresses becomes to large and it is
more energetically favourable for slip to occur. Current research is focused on extending this research to
understand nanomechanics when dislocations are initially present from laser machining.
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