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The dynamics of high area-to-mass ratio (HAMR) objects in high-Earth orbit
have been explored in recent years, finding that extreme variations occur in eccen-
tricity and inclination due to the combined effects of solar radiation pressure, higher
harmonics of the Earth gravity field, and lunisolar perturbations. A sound under-
standing of their nature, orbital evolution, and possible origin is critical for space
situational awareness. We explore a new averaged model for the orbital evolution
of HAMR objects, explicitly given in terms of the eccentricity and angular momen-
tum vectors. This new formulation accounts for all relevant perturbations and pro-
vides predictions of the long-term orbital evolution of HAMR objects that compare
well with non-averaged numerical integrations over many decades. In this paper we
present the force models for each perturbation, their fundamental predictions, and
make comparisons with explicit long-term numerical integrations of HAMR objects
in GEO space. We find that many of the extreme dynamical behaviors reported for
these objects are attributable to the complex coupling between SRP, J2 and lunisolar
perturbations. The dynamical configuration of the Earth-Moon-Sun system, and in
particular the regression of the lunar node in the ecliptic plane, was found to have a
significant resonant effect on the long-term dynamics of HAMR debris orbits.

I. Introduction

THE motion of high area-to-mass ratio (HAMR) objects in high-Earth orbits (HEO) has been studied extensively
since the discovery of this debris population in near GEO orbits by Schildknecht and colleagues (ca. 2004).

Anselmo and Pardini have made several numerical investigations of this problem, mapping out the dynamics of these
objects over long timespans with all relevant perturbations included. Their most recent work1 presents a detailed analy-
sis concerning the long-term evolution of HAMR debris in HEO subject to solar radiation pressure (SRP), geopotential
harmonics up to degree and order eight, and third-body gravitational interactions induced by the Sun and the Moon.
Valk et al.

24 study this problem using techniques from classical perturbation analysis, and are able to analytically ap-
proximate the solutions to the SRP averaged equations and then successfully include terms due to the Earth oblateness
(J2), and potentially to include other perturbations.

In the framework of orbit propagation, the evolution of space debris objects, taking into account both short-period
and long-period terms, requires numerical integration of the precise set of differential equations, and the investigation
of a broad range of possible parameter values. However, such computations become very costly when continuously
applied over a period of several decades, as is necessary in the case of HAMR debris. It therefore seems reasonable to
investigate the equations that govern the long-term behavior of orbits; such equations can be derived by the method of
averaging. The method of averaging, developed by Krylov and Bogoliubov9 in the analysis of nonlinear oscillations,
and generalized by Bogoliubov and Mitropolsky,2 was first applied to problems in celestial mechanics and satellite
theory in the early 1960s.11, 13, 23 The averaged equations of motion capture the secular evolution of the system and
can be numerically integrated, with significantly reduced computational requirements, or in some cases, solved in
closed form (cf.,15, 18, 19). The advantage of this approach is that it is possible to easily capture the qualitative effect of
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perturbations over long timespans, and it reveals the essential dependence of the evolution on the system parameters
in a more satisfactory way than does a numerical solution of the non-averaged equations.

The Draper Semi-analytical Satellite Theory (DSST) orbit propagator, developed by Cefola et al., replaces the
conventional equations of motion with two formulas: equations of motion for the mean equinoctial elements, and
expressions for the short-periodic motion in the equinoctial elements.3, 14 Very complete force models have been
developed for the averaged equations and for the short-periodic motion.4, 7 Liou and Weaver used PROP3D, a fast orbit
propagator based on the averaging principle that was developed for NASA’s debris evolutionary models, to investigate
the HAMR debris problem.12 PROP3D, while not as complete as DSST, accounts for the perturbations from Earth
gravity due to the J2, J3, and J4 zonal harmonics, low-order lunisolar gravitational perturbations, and SRP with
Earth’s shadow effects. Through comparisons with a high-fidelity orbit integrator, they showed that HAMR objects
in GEO are dominated by major perturbations, not those of higher order. Chao (2006) performed long-term studies
of the orbital evolution of GEO objects with high area-to-mass ratios, through analytically averaged equations.5 Chao
investigated the secular effects of SRP on the eccentricity and argument of perigee by averaging over the period of the
HAMR object about the Earth. The long-term motion of the orbit inclination and longitude of the ascending node were
studied though doubly-averaged equations for the lunisolar attraction, ignoring higher-order terms in eccentricity, and
singly-averaged equations for the SRP perturbation.

In previous papers, we explored a new averaged model for the evolution of HAMR debris orbits at high altitudes
(such as GEO), explicitly given in terms of the eccentricity and angular momentum vectors.18, 19, 21 The qualitative
behavior underlined by our combined theory of SRP and J2 is in good agreement with the numerical integrations of
earlier researchers.1, 5, 12, 24 The SRP-only theory is sufficient to capture the sub-yearly oscillations in the inclination
evolution that ride on top of the longer-term drift, and the shift in the long-term oscillation periods with changing
area-to-mass. Incorporating J2 into our SRP-only theory has, as a consequence, a reduction in both the amplitudes
and periods of the long-term secular drift in inclination. The high-fidelity propagations predict that the long-term
inclination and eccentricity variations have a varying maximum amplitude.1 We attribute these non-periodic variations
largely to the effects of third-body perturbations, which is the topic specifically addressed here.

This paper aims to provide a general and qualitative understanding of the orbital motion of HAMR objects released
in high-Earth orbits subject to the averaged effects of solar radiation pressure, Earth oblateness, and lunisolar gravi-
tational attraction. We derive singly- and doubly-averaged expressions for third-body perturbations, which are valid
for all eccentricity and all inclination, and incorporate them into our previous theory. In this formulation, we adopt a
more general perspective that is independent of any particular system of reference by adhering to vector and dyadic
notation. The major contribution of this work is in the analytical representation of the averaged equations in terms
of the Gauss equations. This paper is organized into the following discussions. We first present the environment and
force models for each perturbation, and discuss any underlying assumptions and approximations. We then formulate
the Gauss perturbation equations in alternate osculating orbital elements, and fully derive the averaged equations of
motion. Following this we demonstrate the validity of the averaged equations by comparing numerical integrations
of them to integrations of the exact Newtonian equations. The extent to which the qualitative properties of the orbit
persist with increasing area-to-mass is investigated. We show how the geometry of the Earth-Moon-Sun system, and
in particular the lunar nodal regression, causes a resonance effect with a particular class of HAMR objects leading
to complex evolutionary behavior. Finally, we discuss our future research directions, which includes using our new
averaged model to make predictions of the global spatiotemporal distribution of the HAMR debris population.

II. Environment and Force Models
A. The Earth-Moon-Sun System

Any account of the motions in the Earth-Moon-Sun systems has to start with a description of the dynamical
configuration of this three-body problem. Perozzi et al. (1991),16 using eclipse records, the JPL ephemeris, and
results from numerical integration of the three-body problem, showed that the mean geometry of the Earth-Moon-Sun
system repeats itself closely after a period of time equal in length to the classical eclipse prediction cycle known as the
Saros. Saros means repetition, and indicates a period of 223 synodic months (6585.3213 days, or 18 years 10/11 days,
dependent on the number of leap-years within the cycle), after which the Sun has returned to the same place it occupied
with respect to the nodes of the Moon’s orbit when the cycle began. While the motion of the Earth around the Sun can,
over timespans of interest, be considered Keplerian, the Moon is subject to consistent solar perturbations resulting in
periodic and secular variations of its orbital elements. The node of the Moon’s orbital plane regresses in the ecliptic
plane with a sidereal period of 6798.3 days (about 18.61 years); the node moving westward on the ecliptic at a rate of
roughly 1 in 18.9 days. Thus, the Saros is shorter, by about 213 days, than the sidereal period of nodal regression.
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The intrinsic complexity of lunar motion must be taken into account for long-term studies of HAMR objects.
To describe the motion of the Earth about the Sun, we define a heliocentric orbit frame, Êe, Êe , Ĥe , in which

Êe is the unit vector pointing to the orbit perihelion, Êe is the unit vector in the heliocentric plane of motion and
normal to Êe, and the cross product of these two vectors defines the orbit normal, specified as Ĥe, about which the
Earth revolves 1. With this formulation, the varying position vector between the Earth and the Sun is specified as
de ded̂e and split into a magnitude de and direction d̂e, both of which are functions of the Earth true anomaly ν

de
P

1 E cos ν
(1)

d̂e cos νÊe sin νÊe (2)

where P and E are the orbit parameter and eccentricity of the Earth’s heliocentric orbit, respectively.
The Moon’s actual motion is very complex; high-precision lunar ephemerides are available through the Jet Propul-

sion Laboratory, which account for the relativistic n-body equations of motion for the point-mass Sun, Moon, planets,
and major asteroids, perturbations on the orbit of the Earth-Moon barycenter from the interaction of the point-mass
Sun with the figure, solid-body tides of both the Earth and Moon, and observations of lunar laser ranging.6 Our pur-
pose in this paper is to adopt the simplest possible expressions useful for studying the long-term evolution of HAMR
debris orbits. These expressions must reveal the qualitative regularities of motion, and they must provide, with a cer-
tain degree of accuracy, a way of obtaining quantitative predictions of long-term changes. To that end, we assume the
Moon is on an osculating elliptical orbit in which the lunar node precesses clockwise in the ecliptic plane with a period
of about 18.61 years. We define a geocentric orbit frame, Êm, Êm , Ĥm , where Êm is the unit vector pointing to
the orbit perigee, Êm Ĥm Êm, and Ĥm is the Moon’s angular momentum unit vector, about which the Moon
revolves. These vectors are resolved using the Moon’s ecliptic orbital elements in which Ωm t Ωm0 Ωm t t0 ,
where Ωm 2π Psidereal and Psidereal is the sidereal period of nodal regression in seconds. The position vector from
the Earth to the Moon is then be specified as dm dmd̂m, where dm and d̂m are given by Eqs. 1 and 2, respectively,
using the Moon’s orbit parameters.

B. Solar Radiation Pressure
Solar radiation pressure is the largest non-gravitational perturbative force to affect the motion of HAMR objects

in high-Earth orbits, causing extreme variations in their orbital parameters over short time periods. Typical analysis of
long-term orbit dynamics models the SRP acceleration using the cannonball model, which treats the object as a sphere
with constant optical properties.1, 21, 24 The total momentum transfer from the incident solar photons is modeled as
insolation plus reflection, and the force generated is independent of the body’s attitude. Any force component normal
to the Sun-line that results from an aspherical shape or nonuniformly reflecting surface is thereby neglected. Then the
net acceleration will act in the direction directly away from the Sun-line and have the general form20

asrp 1 ρ A m PΦ
ds r

|ds r|3 (3)

β
ds r

|ds r|3 (4)

where ρ is the reflectance, A m is the appropriate cross-sectional area-to-mass ratio in m2/kg, PΦ is the solar radiation
constant and is approximately equal to 1 108 kg km3 s2 m2, and β 1 ρ A m PΦ. The vector from the Earth
to the Sun is given by ds de, and the position vector of the orbiter relative to the Earth is r. This solar radiation
pressure model can be rewritten as a potential

Rsrp β
1

|ds r| (5)

where asrp Rsrp r. If the object is close to the Earth, or r ds, the potential can be further simplified by
expanding 1 |ds r| and keeping the first term that contains the position vector r.

Rsrp
β

d3s

ds r (6)

1These are the defining orientation integrals of the two-body problem, and can be specified using the classical orbital elements relative to an
inertial frame.20
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with the gradient giving a solar radiation pressure acceleration independent of the object’s position relative to the Earth

asrp
β

d2s

d̂s (7)

For a given semi-major axis, reflectivity and A m value, we define the SRP perturbation angle (first defined by
Mignard and Hénon (1984)15) as

tanΛ
3β

2

a

µµsP
(8)

where µ and µs are the gravitational parameters of the Earth and the Sun, respectively. We note that as the SRP pertur-
bation becomes strong, Λ π 2, and as it becomes weak, Λ 0. The angle Λ can be used to rigorously characterize
the strength of the SRP perturbation acting on a body as a function of both its orbit and its non-gravitational parameter.
As it combines these two quantities into a single parameter, which completely defines the long-term SRP-only solution
(c.f.,19, 21), we find it efficacious to use as the fundamental, defining characteristic of HAMR objects.

Although the cannonball model captures the general nature of SRP, it does not provide a precise prediction of how
an individual object will evolve. However, this simple model is commonly used in the propagation of HAMR debris
orbits since there is no method to incorporate a physically realistic SRP model with a lack of a priori information
(i.e., object geometry, attitude behavior, surface properties, optical and thermal characteristics, etc.). In Ref. 21, it is
explicitly shown that averaging a general SRP force expression in time for a randomly tumbling body, i.e., one that
presents all attitudes to space with equal probability, yields precisely the cannonball model. Thus, at this limit, we
view the cannonball model as representing an average result. These more general models were investigated in Ref. 18.
In the current paper, we will focus on the cannonball model as that will allow a direct comparison with earlier analyses
of HAMR debris orbit dynamics (cf.,1, 5, 24).

C. Earth Mass Distribution
We consider the effects of the C20 and C22 terms of the harmonic expansion of Earth’s gravitational potential,

which account for the polar and equatorial flattening of the Earth’s figure. Inclusion of the dominant zonal and
sectoral harmonics is sufficient to capture the main effects of nonsphericity in the Earth’s mass distribution at high-
altitude orbits. The standard way to represent the potential function of the second degree and order gravity field
perturbation is using a body-fixed frame with latitude angle δ measured from the equatorial plane and longitude angle
λ measured in the equator from the axis of minimum moment of inertia

R2
µC20

2r3
1 3 sin2 δ

3µC22

r3
cos2 δ cos 2λ (9)

where C20 J2 is the oblateness gravity field coefficient and C22 is the ellipticity gravity field coefficient. We state
the perturbation function in a general vector expression

R2
µC20

2r3
1 3 r̂ p̂

2 3µC22

r3
r̂ ŝ

2
r̂ q̂

2 (10)

where we assume that the unit vectors p̂, q̂, and ŝ are aligned with the body’s maximum, intermediate, and minimum
axes of inertia. The perturbing acceleration is then computed as

a2
R2

r
(11)

3µC20

2r4
1 5 r̂ p̂

2
r̂ 2 r̂ p̂ p̂

3µC22

r4
5 r̂ ŝ

2
r̂ q̂

2
r̂ 2 r̂ ŝ ŝ r̂ q̂ q̂ (12)

D. Lunisolar Gravitational Attraction
Also necessary to incorporate in this analysis is the perturbation of the Sun and Moon’s gravity on the motion of

the HAMR object. These can be modeled as third-body perturbations, and their functional form can be simplified by
performing an appropriate expansion. Taking Earth as the center of our dynamical system, the perturbation acceleration
from a body with gravitational parameter µp is represented as20

ap µp
r dp

|r dp|3
dp

|dp|3
(13)
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where dp is the position vector of the body relative to Earth. For use in perturbation analysis it is convenient to recast
this as a perturbing acceleration potential

Rp µp
1

|r dp|
dp r

|dp|3
(14)

where ap Rp r. As the orbiter’s distance from the Earth is small compared to the distance between the Earth
and the third body, or r dp 1, the perturbing potential can be represented as an infinite series using the Legendre
expansion resulting in20

Rp
µp

dp i 0

r

dp

i

Pi,0
r dp

rdp

dp r

d2p

(15)

Keeping only the first non-constant term, with the Legendre polynomial P2,0 x 1 2 3x2 1 , yields

Rp
µp

2d3p
3 r d̂p

2
r
2 (16)

Thus, to lowest order, the gravitational attraction of the Sun and the Moon is represented as a quadratic form, which
is the fundamental approximation made in the Hill problem.20 Under this approximation the perturbing acceleration
simplifies to

ap
µp

d3p

3 r d̂p d̂p r (17)

E. Non-averaged Equations of Motion
Combining the above force models, we can define the equations of motion for a HAMR object in orbit about the

Earth. In an inertially fixed frame centered at the Earth, they can be stated in relative form

r
U

r
(18)

U r
µ

r
Rsrp r R2 r Rs r Rm r (19)

where Rs and Rm are third-body acceleration potential functions for the Sun and the Moon, respectively. Performing
the partial derivatives, we can state the problem in terms of the perturbation accelerations as

r
µ

r3
r asrp a2 as am (20)

III. Averaged Equations of Motion
We now introduce the concept of averaging as this allows us to evaluate the secular effects of the perturbations

on our system. For averaging to be valid, we assume that the perturbing forces are sufficiently small so that, over
one orbital period, the deviations of the true trajectory from the Keplerian trajectory are relatively small. In this case,
oscillations in the orbital elements will average out over reasonably small periods. We refer the reader to Ref. 2 for a
complete description of the mathematical bases of averaging.

Instead of using the classical orbital elements for our perturbation theory, we use the eccentricity vector e and
the angular momentum vector normalized by µa, denoted as h, as the osculating orbital elements for the Gauss
perturbation equations. This formulation, first purposed by Richter and Keller (1995),17 has the significant advantage
in being well-defined for all orbits and results in simpler variational equations. Note that e h 0 and we have the
constraint on these elements e e h h 1. We recall that these elements are functions of the classical elements
e, i, ω, and Ω, and thus can be used to evaluate their secular rates. Specifically, h 1 e2ĥ and e eê, where ĥ

and ê are given in Appendix A..
We can write these vectors in terms of the position r and velocity v of the orbiter in dyadic notation as

h
1

µa
r̃ v (21)

e
1

µ
ṽ r̃ v

r

r

1

µ
rv r v U v r̂ (22)
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where U is the identity dyad. Differentiating with respect to time, we obtain the Gauss equations for h and e:

h
h

v
ad

1

µa
r̃ ad (23)

e
e

v
ad

1

µ
r v ṽ r̃ ad

1

µ
µah̃ ṽ r̃ ad (24)

where ad is an arbitrary disturbing acceleration.
Averaging is defined as an operator that computes the time average of a quantity over one orbit period, while

keeping all other orbital elements constant.20 Thus, the averaged equations of motion are defined by

h̄
1

2π

2π

0
h dM (25)

ē
1

2π

2π

0
e dM (26)

where the over bar indicates the averaged value, the averaging is carried out over the orbiter’s unpreturbed two-body
motion about the Earth, and M is the orbiter’s mean anomaly. Since the perturbations in our system each come from a
potential, the semi-major axis becomes a constant of the motion, and is thus treated as a free parameter in our solutions.

A. Averaged SRP Dynamics
Substituting the perturbation acceleration, Eq. 7, into Eqs. 23 and 24, the differential equations for h and e,

resulting from SRP acceleration, can be written as

hsrp
1

µa
r̃

β

d2s

d̂s

β

µad2s

˜̂
ds r (27)

esrp
1

µ
µah̃ ṽ r̃

β

d2s

d̂s

β

µd2s

µa
˜̂
ds h ṽ r̃ d̂s (28)

Averaging over these equations, we find2

h̄srp
β

µad2s

˜̂
ds r̄ (29)

ēsrp
β

µd2s

µa
˜̂
ds h ṽ r̃ d̂s (30)

in which we note20

r̄
3

2
ae (31)

ṽ r̃ rv r v U

1

2
µah̃ (32)

2The bar (¯ ) operator is omitted from the Keplerian elements in what follows because there is no ambiguity; i.e., all variables are averaged
variables.
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Consequently,

h̄srp
3

2

a

µ

β

d2s

˜̂
ds e (33)

ēsrp
3

2

a

µ

β

d2s

˜̂
ds h (34)

In Ref. 19, Scheeres showed that the averaged Gauss equations, Eqs. 33 and 34, can be solved in closed form,
yielding an analytical solution for the secular variation in the eccentricity and angular momentum vectors. The ana-
lytical solution is expressed in a frame that rotates with the Sun-line, and solutions are periodic in ν cosΛ, repeating
every Earth true anomaly 2π cosΛ. Thus, over one heliocentric orbit the solution will advance 1 cosΛ times. As the
perturbation grows large, and Λ approaches π 2, the solution will repeat many times over one year. Conversely, as the
perturbation grows small the solution will repeat only once every year. Since the solutions are time-periodic, perform-
ing a second average of the Gauss equations over the motion of the Sun results in the SRP perturbations averaging to
zero. Thus, unlike third-body perturbations, a doubly-averaged SRP formulation is inappropriate.

In a previous study,21 we applied the SRP-only averaged solution to the dynamics of HAMR objects in GEO and
GPS orbit regimes having a variety of Λ values. One of the surprising aspects of the theory is that the extremely
simple, periodic behavior that occurs relative to the Earth-Sun rotating frame becomes quite complex and aperiodic in
the Earth equatorial frame. The presence of the complex oscillations in eccentricity and inclination, with short-period
and long-period terms, is just an artifact of transforming into the Earth equatorial frame.

B. Averaged J2 Dynamics
Hu and Scheeres (2002)8 study the secular motion about slowly rotating asteroids in a second degree and order

gravity field. We note that in general, the orbital elements will have periodic motion resulting from the C22 dynamics,
and thus these effects, if they exist, will get averaged out over longer time periods. For HAMR objects in GEO
space, Lemaı̂tre et al. (2009)10 found that a resonance occurs from the C22 dynamics, giving rise to chaotic behavior
localized to a narrow range of semi-major axis. With mean motion averaging, our theory will be unable to account
for this subtle, and potentially important, aspect of motion. Therefore, we only consider the averaged C20 dynamics
in our system. The secular Gauss equations, resulting from Earth oblateness perturbations, were derived previously18

and are given below:

h20
3nC20

2a2h5
h p̂ ˜̂p h (35)

e20
3nC20

4a2h5
1

5

h2
h p̂

2
h̃ 2 h p̂ ˜̂p e (36)

C. Averaged Third-body Dynamics
Singly-averaged Equations : Substituting the third-body perturbation gravitational acceleration, Eq. 17, into

Eqs. 23, the differential equation for h can be written as

hp
1

µa
r̃

µp

d3p

3 r d̂p d̂p r

3µp

µad3p

d̂p rr
˜̂
dp (37)

We now average over the orbiter’s unpreturbed two-body motion about the Earth

h̄p
3µp

µad3p

d̂p rr
˜̂
dp (38)

in which we note20

rr
1

2
a
2 1 4e2 êê 1 e

2
ê ê

1

2
a
2 1 e

2
U 5ee hh (39)
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Consequently,

h̄p
3µp

µad3p

d̂p
1

2
a
2 1 e

2
U 5ee hh

˜̂
dp

3µp

2nd3p
d̂p 5ee hh

˜̂
dp (40)

Substituting the perturbation acceleration into Eq. 24, the differential equation for e can be written as

ep
1

µ
µah̃ ṽ r̃

µp

d3p

3 r d̂p d̂p r

µp

µd3p

3 µa r d̂p h̃ d̂p µah̃ r 3 r d̂p ṽ r̃ d̂p

µp

µd3p

3 µa r d̂p h̃ d̂p µah̃ r 3d̂p rrv r v rU d̂p (41)

Averaging over this equation, we find

ēp
µp

µd3p

3 µa r̄ d̂p h̃ d̂p µah̃ r̄ 3d̂p rrv r v rU d̂p (42)

where (cf., Appendix B.)

r v r
1

2
µa

3 2
e 1 e2ê (43)

rrv
1

2
µa

3 2
e 1 e2 2êêê êê ê ê êê (44)

Consequently,

ēp
3e 1 e2µp

2nd3p
3 ê d̂p

˜̂
h d̂p

˜̂
h ê d̂p 2êêê êê ê ê êê ê U d̂p

3e 1 e2µp

2nd3p
3 ê d̂p

˜̂
h d̂p

˜̂
h ê ê d̂p

2
ê ê d̂p d̂p

˜̂
h êê ê d̂p d̂p

3e 1 e2µp

2nd3p
3 ê d̂p

˜̂
h d̂p

˜̂
h ê ê d̂p

2
ê ê d̂p d̂p

˜̂
h U ê ê ĥĥ ê d̂pd̂p

3e 1 e2µp

2nd3p
4 ê d̂p

˜̂
h d̂p

˜̂
h ê ê d̂pd̂p

3µp

2nd3p
4 e d̂p h̃ d̂p h̃ e d̂pd̂p h̃ e (45)

We note that the singly-averaged Gauss equations, Eqs. 40 and 45, contain no singularities; that is, they are valid for
all eccentricity and all inclination. In addition, since we make no assumptions on the motion of the disturbing body,
except that its position is fixed during the process of averaging, it is possible to use a high-accuracy ephemeris for d̂p.

Doubly-averaged Equations : The singly-averaged Gauss equations can be restated as

h̄p
3µp

2n
5e

d̂pd̂p

d3p

ẽ h
d̂pd̂p

d3p

h̃ (46)

ēp
3µp

2n
4e

d̂pd̂p

d3p

h̃
1

d3p

h̃ e
d̂pd̂p

d3p

h̃ e (47)

in which the disturbing body is now assumed to be in an elliptic orbit.
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We now perform a second average over d̂p as

hp
1

2π

2π

0
h̄ dMp (48)

3µp

2n
5e

d̂pd̂p

d3p

ẽ h
d̂pd̂p

d3p

h̃ (49)

ep
1

2π

2π

0
ē dMp (50)

3µp

2n
4e

d̂pd̂p

d3p

h̃
1

d3p

h̃ e
d̂pd̂p

d3p

h̃ e (51)

where ( ) denotes the double averaged value. Note that20

d̂pd̂p

d3p

1

2a3p 1 e2p
3 2

U ĤpĤp (52)

1

d3p

1

a3p 1 e2p
3 2

(53)

where Ĥp is angular momentum unit vector of the perturbing body. Consequently, the doubly-averaged third-body
dynamics for an elliptically orbiting disturbing body become

hp
3µp

4na3p 1 e2p
3 2

5e U ĤpĤp ẽ h U ĤpĤp h̃

3µp

4na3p 1 e2p
3 2

Ĥp 5ee hh
˜̂
Hp (54)

ep
3µp

4na3p 1 e2p
3 2

4e U ĤpĤp h̃ 2h̃ e U ĤpĤp h̃ e

3µp

4na3p 1 e2p
3 2

4 e Ĥp h̃ Ĥp h̃ e ĤpĤp h̃ e (55)

As shown in Appendix C., the secular variations in the classical orbital elements, resulting from the doubly-
averaged third-body dynamics, can be formulated in terms of the vectors h and e. These orbital rates can also be
found by averaging the Hill-approximated third-body perturbing potential (Eq. 16) over the mean motion of the Earth
orbiter and the disturbing body, respectively, and then substituting this doubly-averaged potential into the Lagrange
planetary equations. This result was originally realized by Lidov (1961),11 Lorell, and Anderson (1962)13 in the study
of lunar satellite motion. Our unique approach, however, has the advantage that the orbit-averaged equations, given by
Eqs. 54 and 55, are completely non-singular and are written in a concise analytical vector form.

D. Secular Gauss Equations
The secular evolution of the normalized angular momentum vector h and the eccentricity vector e in the presence

of SRP, J2 and lunisolar perturbations can be stated as

h hsrp h20 hs hm (56)
e esrp e20 es em (57)

where the over bar has been dropped, the SRP dynamics are given by Eqs. 33 and 34, and the C20 dynamics are given
by Eqs. 35 and 36. The lunisolar dynamics can either be represented by the singly-averaged equations, Eqs. 40 and
45, or the doubly-averaged equations, Eqs. 54 and 55. In this formulation, the motion of the disturbing bodies can
either be supplied from theory, i.e., the two-body solution, or can be provided by an ephemeris.

Combining all of these perturbations leads to a highly-nonlinear system, which does not appear integrable. Al-
though the exact averaged solution is presumably inaccessible, the expressions given in Eqs. 56 and 57 are several
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hundred times faster to numerically integrate than their non-averaged Newtonian counterparts. With these results it
is possible to predict accurately the long term orbital behavior of HAMR objects, given the initial values of the or-
bital elements and the initial geometry of the Earth-Moon-Sun system; the latter being important for calculation of
Moon-induced perturbations.

IV. Long-term Dynamics of HAMR Objects
Numerical integration of the precise non-averaged equations of motion, Eq. 20, represents the most accurate means

of calculating the exact trajectory of an orbiting body in a given time interval. Comparison of these solutions with the
results obtained from the averaged formulas is a significantly reliable estimate of the accuracy of the approximated
equations. Such comparison permits us to conclude about the applicability of the averaged equations for considering
the evolution of HAMR debris orbits. Particular emphasis is given in these applications to HAMR objects with area-
to-mass ratios and conditions of those observed in nearly geosynchronous orbit by optical observations.22 The initial
conditions for all objects examined, given in terms of mean Keplerian orbital elements, are provided in Table 1. To
give an idea of the main characteristics of motion, the dynamics were simulated using a reflectance value of 0.36, and
area-to-mass ratios between 1 and 20 m2/kg. For a given semi-major axis, reflectivity and A m value, we compute
the corresponding Λ angle which we use to characterize the evolutionary behavior of HAMR debris orbits. The SRP
perturbation angles, as computed from Eq. 8, are shown in Table 2.

Table 1: Initial orbital elements for HAMR debris released in near GEO orbit.

Epoch a [km] e i [ ] Ω [ ] ω [ ] M [ ]

1950.01.01 12:00:00 UTC 42164.465 0.0001 0.0971 50.001 220.001 301.221

The epoch date determines the initial dynamical configuration of the Earth-Moon-Sun system. The
orbital elements for the Earth and the Moon, corresponding to this epoch, are taken from the JPL
ephemeris.

Table 2: Area-to-mass ratios and corresponding
SRP perturbation angles for GEO objects.

A m [m2/kg] 1 ρ A m [m2/kg] Λ [ ]

1 1.36 0.85
5 6.8 4.26

10 13.6 8.47
15 20.4 12.60
20 27.2 16.59

A reflectance value of 0.36 was assumed.

A. Newtonian Non-averaged Dynamics
In order to better understand the long-term dynamics of the system and to validate our semi-analytical aver-

aged theory, we propagate the orbits for 100 years, using the full non-averaged equations of motion (see Figure
1). For the non-averaged dynamics, we use the high accuracy solar system ephemeris, provided by JPL, to cal-
culate the position vectors of the Sun and the Moon. The long-term eccentricity and inclination evolution shown
in Figures 1(a) and 1(b) closely matches the results obtained by Anselmo and Pardini.1 Concerning the eccen-
tricity evolution, solar radiation pressure alone induces sub-yearly oscillations with period 2π cosΛ; the amplitude
increasing with increasing Λ. Inclusion of the C20 and C22 harmonics causes only slight changes in the short-term
oscillations, but induces long-period small fluctuations in the maximum amplitudes. The dynamical coupling be-
tween SRP and J2 becomes more pronounced with increasing Λ (c.f.,18). The addition of third-body perturbations,
primarily the attraction of the Moon, causes a slight increase in the short-term amplitudes, and gives rise to long-
term aperiodic oscillations in the maximum amplitudes. The evolution of the two-dimensional eccentricity vector,
e cosω cosΩ cos i sinω sinΩ; cosω sinΩ cos i sinω cosΩ , is characterized by both a yearly and long-term re-
gression; the latter exhibiting complex evolutionary behavior (see Figure 1(c)).

Regarding the inclination evolution, solar radiation pressure accounts for the sub-yearly oscillations that ride on
top of the longer-term secular drift, and the reduction in the long-term oscillation periods with increasing Λ. The
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addition of geopotential harmonics, mainly C20, brings about a reduction in both the amplitude and period of the
long-term oscillations. Inclusion of lunisolar perturbations causes a decrease in the long-term oscillation periods, and
for certain values of Λ—most notably Λ 12.60 —causes large fluctuations (peak-to-peak changes) in the maximum
amplitudes. These fluctuations manifest themselves as a beating phenomenon in the evolution of the two-dimensional
angular momentum unit vector, sin i sinΩ, sin i cosΩ . Note that for lower values of Λ, this complex behavior is
not observed, as shown in Figure 1(d).
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c) Two-dimensional eccentricity vector evolution.
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d) Two-dimensional angular momentum unit vector evolution.

Figure 1: Long-term orbit evolution (100 years) in the Earth equatorial frame for different values of the SRP
perturbation angle, as predicted by the full non-averaged equations of motion, Eq. 20, using Eq. 4 for SRP, Eq.
12 for C20 and C22, and Eq. 13 for lunisolar perturbations. The position vectors of both the Sun and the Moon
were computed using the JPL ephemeris.

B. Secular Dynamics
Since our Newtonian non-averaged results compare well, both quantitatively and qualitatively, with those of

Anselmo and Pardini3, they can be used as a logical basis for assessing the validity of our averaged theory. We
are particularly interested in distinguishing between cause and effect and in identifying the precise origin of any per-
turbation experienced by the HAMR object. To that end, we avoid using the precise JPL ephemeris, and instead
assume two-body dynamics for the Sun and the Moon, for which the lunar node regresses in the ecliptic plane with a
sidereal period of 18.61 years (see Section II. A.).

The orbit evolution of several HAMR objects, obtained using numerical integrations of the singly-averaged equa-

3In addition to our force model, they account for higher-order gravity field perturbations and Earth shadow effects in their numerical integrations.
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tions of motion, are shown in Figure 2. The approximated averaged equations, using two-body dynamics and ac-
counting for the regression of the Moon’s node, gives us nearly identical plots at this level of resolution as the full
Newtonian non-averaged simulations, using a precise ephemeris. We do not use any special formalism in our integra-
tions to preserve the constraints on h and e

4, yet after 100 years, they are satisfied to over one part per billion.
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d) Two-dimensional angular momentum unit vector evolution.

Figure 2: Long-term orbit evolution (100 years) in the Earth equatorial frame for different values of the SRP
perturbation angle, as predicted by the singly-averaged equations of motion, Eqs. 40 and 45. The position vec-
tors of both the Sun and Moon were computed using two-body dynamics, accounting for lunar nodal regression.

We now illustrate the limitations and domain of validity of the doubly-averaged third-body equations, which, in
their Lagrangian form (see Appendix C.), have been used extensively for lunar orbiter long-arc analysis during the
1960s (c.f.,11, 13). The long-term evolution of the two dimensional angular momentum unit vector and eccentricity
vector are shown in Figure 3. Since the doubly-averaged equations, Eqs. 54 and 55, are written in a vector form that
depend on the angular momentum unit vector of the perturbing body, Ĥp, we can account for the regression of the
lunar node in our simulations5. In all cases considered, the doubly-averaged equations predict the qualitative nature of
the orbits; however, the angular momentum vector evolution becomes misaligned with the singly-averaged results after
several decades. For larger SRP perturbation angles, corresponding to faster precessions of the angular momentum
vector, this deviation becomes more pronounced. For Λ 12.60 , the doubly-averaged equations are able to capture
the complex beating phenomenon, but predict a faster precession causing a shift in the inclination evolution.

4Recall that e h 0 and e e h h 1.
5In our derivation of the doubly-averaged equations, we assumed the Moon followed a Keplerian ellipse about the Earth. However, in one Saros

cycle the Moon completes over 200 orbits, thereby justifying our inclusion of its nodal regression into our integrations.
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Figure 3: Comparison of singly-averaged and doubly-averaged third-body dynamics for long-term propaga-
tions (100 years) over a range of Λ values. For all cases, the doubly-averaged solutions are shown in black. The
singly-averaged SRP and J2 dynamics were included in the simulations, and the position vectors of both the
Sun and the Moon were computed using two-body dynamics, accounting for the lunar nodal regression.

C. Saros Resonance
Although the exact solution to the secular orbital motion is unknown, its qualitative properties are understood more

easily though our formulation of the averaged equations. For certain SRP perturbation angles, the coupling between
SRP, J2 and lunisolar perturbations produce unexpectedly rich dynamical behaviors. In particular, we discovered that
when the nodal rate of the system is commensurate with the nodal rate of the Moon, the perturbations build up more
effectively over long periods to produce significant effects on the orbit. Such resonances, which occurs for a class of
HAMR objects that are not cleared out of orbit, gives rise to strongly changing dynamics over longer time periods.
This resonant behavior explains the long-term beating phenomenon that occurs for Λ 12.60 (see Figure 2(d)). Its
nodal period in the equatorial frame is close enough to the Saros (sidereal period of nodal regression) that there is a
strong interaction between the lunar effects and the overall precession rate. The orbit goes through a period where the
Moon is actually systematically reducing the angular momentum or some component of it, and a period where it is
farther away and increasing it.

To better understand the underlying mechanism of this resonance effect, we propagate several HAMR objects for
200 years using the initial condition given in Table 1, but varying the initial lunar node. For Λ 13.81 , the nodal
period is approximately equal to 18.61 years, thereby inducing a 1: 1 resonance with the Saros. Figure 4 shows the
inclination and angular momentum vector evolution, as a function of the initial node angle. The qualitative picture
of the evolution changes drastically based on this angle, which is indicative of resonance. Figures 5 and 6 shows the
evolution of objects with nodal rates either too slow or too fast to resonantly interact with the Saros. The approximate
range of SRP perturbation angles for which resonance can be important at GEO is between Λ 10.5 and Λ 15.5 .

V. Discussion
The recognition of the Saros resonance raises many questions of interest concerning the nature and evolution of

the HAMR debris population. This phenomenon actually appears in Anselmo and Pardini’s1 numerical results, and is
relevant for many of the observed HAMR debris in near GEO orbits. Since the singly-averaged and, to some extent,
the doubly-averaged results capture this subtle behavior, our averaged model accounts for the full dynamics precisely,
and can be used for long-term predictions. The differences between the singly-averaged and doubly-averaged results
is largest for HAMR objects that are caught in this resonance; as for this case, averaging over the Moon’s motion may
be violating the first-order averaging principle. Further analysis is needed to fully understand the resonance effect, and
will be pursued in future research.
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Figure 4: Long-term orbit evolution of an object with Λ 13.81 , as a function of the initial lunar node.

In
cl

in
at

io
n

[d
eg

]

Time [years]

0 20 40 60 80 100 120 140 160 180 200

0

5

10

15

20

25

30

In
cl

in
at

io
n

[d
eg

]

Time [years]

0 20 40 60 80 100 120 140 160 180 200

0

5

10

15

20

25

30

In
cl

in
at

io
n

[d
eg

]

Time [years]

0 20 40 60 80 100 120 140 160 180 200

0

5

10

15

20

25

30

In
cl

in
at

io
n

[d
eg

]

Time [years]

0 20 40 60 80 100 120 140 160 180 200

0

5

10

15

20

25

30

si
n
i
c
o
s
Ω

sin i sinΩ

0.3 0.2 0.1 0 0.1 0.2 0.3

0.5

0.4

0.3

0.2

0.1

0

0.1

a) Ωm 0 Ωm0

si
n
i
c
o
s
Ω

sin i sinΩ

0.3 0.2 0.1 0 0.1 0.2 0.3

0.5

0.4

0.3

0.2

0.1

0

0.1

b) Ωm 0 Ωm0 π 2

si
n
i
c
o
s
Ω

sin i sinΩ

0.3 0.2 0.1 0 0.1 0.2 0.3

0.5

0.4

0.3

0.2

0.1

0

0.1

c) Ωm 0 Ωm0 π

si
n
i
c
o
s
Ω

sin i sinΩ

0.3 0.2 0.1 0 0.1 0.2 0.3

0.5

0.4

0.3

0.2

0.1

0

0.1

d) Ωm 0 Ωm0 3π 2

Figure 5: Long-term orbit evolution of an object with Λ 8.47 , as a function of the initial lunar node.
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Figure 6: Long-term orbit evolution of an object with Λ 16.59 , as a function of the initial lunar node.
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The dynamic behavior underlined by our averaged theory is in good agreement with earlier researchers.1, 5, 12, 24

We attribute any quantitative differences between the singly-averaged and non-averaged simulations to our use of the
Hill approximation for the lunar perturbing potential; namely, in the assumption that r dm 1, which is not entirely
accurate for GEO orbiting debris. However, this does not present an issue, as our theory is able to capture the extreme
dynamical behaviors resulting from the complex coupling between SRP, J2 and lunisolar perturbations.

VI. Conclusion
The contribution of our current analysis is the development of a new non-singular theory of first-order averaging

explicitly given in terms of the eccentricity and angular momentum vector. This work provides a unified approach
to the analysis and simulation of HAMR debris over long timespans, and allows for the qualitative nature of their
evolution to be understood. We exposed the Saros resonance as an important phenomena that has not been identi-
fied previously, and which leads to complex evolutionary behaviors when the perturbing forces act in concert. This
resonance may play a role in generating orbital chaos, which is a topic of future research.

We have shown that we understand every aspect of HAMR debris motion, and that by knowing the complete
qualitative picture of the evolution, we can use our model to predict the population. Given that HAMR objects are
the most difficult to target from an observational point of view, this work will have many implications for the space
surveillance community, and will allow observers to implement better search strategies for this class of debris. The
properties of the resonant population will serve as important constraints for models of its origin and evolution.

Appendices
A. Vector Kinematic Quantities

The fundamental vectors for the two-body problem, specified using the classical orbit elements relative to an
inertial frame, are20

ĥ sin i sinΩx̂ sin i cosΩŷ cos iẑ (58a)
ê cosω cosΩ cos i sinω sinΩ x̂

cosω sinΩ cos i sinω cosΩ ŷ

sin i sinωẑ (58b)

ê
˜̂
h ê (58c)

sinω cosΩ cos i cosω sinΩ x̂

sinω sinΩ cos i cosω cosΩ x̂

sin i cosωẑ (58d)

B. Averaging Results
For the elliptic orbit two-body problem

r r cos f ê sin f ê (59)

v
µ

a 1 e2
sin f ê e cos f ê (60)

where

r
a 1 e

2

1 e cos f
(61)

Although averaging is defined with respect to mean anomaly, we can compute the averages using true anomaly through
the differential relationship

dM
1 e

2 3 2

1 e cos f 2
df (62)

We also have the following useful relations for the flight path angle γ:

r v H tan γ (63)

tan γ
e sin f

1 e cos f
(64)
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where H µa 1 e2 is the angular momentum of the orbit. Therefore,

r v r
1

2π

2π

0
r v r dM

µa
3 2

e 1 e
2 3

2π

2π

0

cos f sin f

1 e cos f 4
ê

sin2 f

1 e cos f 4
ê df (65)

Noting that the factor of ê is an odd function in true anomaly, and hence will average to zero, we obtain

r v r
µa

3 2
e 1 e

2 3

2π

2π

0

sin2 f

1 e cos f 4
df ê (66)

We can expand 1 1 e cos f 4 in a Fourier series (c.f.20) as

1

1 e cos f 4
m 0

b
4
m cos mf (67)

where the coefficients have the general definitions:

b
n
0

1 e2

1 e2 n
f
n
0 (68)

b
n
k 1 k2

e

2

k 1 e2

1 e2 n
f
n
k (69)

in which

f
n 1
k

n k ! n k !

n!2

n k 2

l 0

n!

l! l k ! n k 2l !

e

2

2l
n 1 k

n k

n
1 e

2
f
n
k 2fn 1

k 1 n 1 k

(70)

f
1
k

2

1 1 e2

k

(71)

where a is the floor function and denotes the integer part of a. Substituting the expansion into Eq. 66 and applying
a simple trig relation for sin2 f , we find

r v r
µa

3 2
e 1 e

2 3

4π

2π

0
1 cos 2f

m 0

b
4
m cos mf df ê

µa
3 2

e 1 e
2 3

2
b
4
0

1

2
b
4
2 ê (72)

where

b
4
0

1 e2

1 e2 4
f
4
0 , b

4
2

e
2

2

1 e2

1 e2 4
f
4
2 (73)

Computation of the factors yields f4
0 1 3e2 2 and f

4
2 10. Therefore,

r v r
1

2
µa

3 2
e 1 e2ê (74)

We also require the average of the triad of position and velocity vectors rrv. From Eqs. 59 and 60, this triad can
be expressed in terms of the fundamental vectors

rrv rH cos2 f tan γ cos f sin f êêê cos f sin f tan γ sin f cos f êê ê

cos2 f tan γ sin f cos f êêê cos f sin f tan γ cos f sin f êê ê

cos f sin f tan γ cos f sin f ê êê sin2 f tan γ sin f cos f ê ê ê

cos f sin f tan γ sin f cos f ê êê sin2 f tan γ cos f sin f ê ê ê (75)
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Noting that tan γ and sin f are both odd functions in true anomaly, and cos f and r are both even in true anomaly, the
factors of êêê, êê ê , ê êê , and ê ê ê will be odd in true anomaly, and hence will average to zero. Therefore,

rrv
1

2π

2π

0
rrv dM

µa
3 2 1 e

2 3 2

2π

2π

0

1

1 e cos f
cos2 f tan γ sin f cos f êêê cos f sin f tan γ cos f sin f êê ê

cos f sin f tan γ cos f sin f ê êê sin2 f tan γ sin f cos f ê ê ê dM (76)

We compute the averages using eccentric anomaly through the relationships

cos f
cosE e

1 e cosE
(77)

sin f
1 e2 sinE

1 e cosE
(78)

cosE
e cos f

1 e cos f
(79)

sinE
1 e2 sin f

1 e cos f
(80)

dM 1 e cosE dE (81)

The first integral becomes

2π

0

cos2 f tan γ sin f cos f

1 e cos f
dM

2π

0

cos2

1 e cos f

e cos f

1 e cos f
dM

1

1 e2

2π

0
cosE cosE e

2 dE

2πe

1 e2
(82)

The next integral is evaluated as

2π

0

cos f sin f tan γ cos f sin f

1 e cos f
dM

2π

0

cos f sin f

1 e cos f

sin f

1 e cos f
dM

2π

0
cosE

e 1 e cosE

1 e2
sin2 E dE

e

1 e2

2π

0
1 e cosE sin2 E dE

πe

1 e2
(83)

And the final integral is

2π

0

sin2 f tan γ sin f cos f

1 e cos f
dM

2π

0

sin2 f

1 e cos f

e cos f

1 e cos f
dM

2π

0
cosE sin2 E dE

0 (84)

Substituting these results into Eq. 76 gives

rrv
1

2
µa

3 2
e 1 e2 2êêê êê ê ê êê (85)
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C. Third-body Doubly-averaged Orbital Element Rates
The perturbation equations for the classical orbital elements can be expressed in terms of the vectors h and e using

vector calculus. Namely,

e ê e (86)

where ( ) on e has been dropped for convenience. Substituting Eq. 55 for e gives

e
3µp

4na3p 1 e2p
3 2

4 e Ĥp ê h̃ Ĥp ê h̃ e h̃ e Ĥp ê Ĥp

15e 1 e2µp

4na3p 1 e2p
3 2

ê Ĥp ê Ĥp (87)

Recalling that cos i ĥ Ĥp, the secular rate for inclination is found by differentiating both sides of the relation

sin i i ĥ Ĥp (88)

where ĥ is found through h and h

ĥ
ee

1 e2
ĥ

1

1 e2
h (89)

Therefore,

sin i i
ee

1 e2
ĥ Ĥp

1

1 e2
h Ĥp (90)

Noting that h Ĥp 0 and substituting Eq. 87 for e yields

sin i i
15e2µp

4n 1 e2a3p 1 e2p
3 2

ĥ Ĥp ê Ĥp ê Ĥp (91)

Consequently,

i
15e2µp

4n 1 e2a3p 1 e2p
3 2

ĥ Ĥp ê Ĥp ê n̂ (92)

The longitude of the ascending node is given by

tanΩ
ĥ Êp

ĥ Êp

(93)

Differentiating with respect to time, we find

1

cos2 Ω
Ω

ĥ Êp ĥ Êp ĥ Êp ĥ Êp

ĥ Êp
2

(94)

in which we note

ĥ Êp
ee

1 e2
ĥ Êp

1

1 e2
h Êp

3µp

4n 1 e2a3p 1 e2p
3 2

5e2 ĥ Êp ê Ĥp ê Ĥp Ĥp 5ee hh Êp (95)

ĥ Êp
ee

1 e2
ĥ Êp

1

1 e2
h Êp

3µp

4n 1 e2a3p 1 e2p
3 2

5e2 ĥ Êp ê Ĥp ê Ĥp Ĥp 5ee hh Êp (96)
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Therefore, the numerator on the right-hand side of Eq. 94 becomes

ĥ Êp ĥ Êp ĥ Êp ĥ Êp
3µp

4n 1 e2a3p 1 e2p
3 2

ĥ Êp Ĥp 5ee hh Êp

ĥ Êp Ĥp 5ee hh Êp

3µp

4n 1 e2a3p 1 e2p
3 2

ĥ Ĥp

5 e Ĥp
2

h Êp
2

h Êp
2 (97)

Consequently,

Ω
3µp

4n 1 e2a3p 1 e2p
3 2

ĥ Ĥp 5 e Ĥp
2

h Êp
2

h Êp
2 cos2 Ω

ĥ Êp
2

3µp

4n 1 e2a3p 1 e2p
3 2

ĥ Ĥp 5 e Ĥp
2

h Êp
2

h Êp
2 1

sin2 i

3µp

4n 1 e2a3p 1 e2p
3 2

ĥ Ĥp 1 4e2 5e2 ê n̂
2 (98)

The secular equation for the argument of periapsis is obtained by differentiating cosω ê n̂ as

sinω ω ê n̂ ê n̂ (99)

where, from Eqs. 55 and 87, we have

ê
e eê

e
(100)

3 1 e2µp

4na3p 1 e2p
3 2

ê Ĥp
˜̂
h Ĥp

˜̂
h ê

˜̂
h ê Ĥp Ĥp 5 ê Ĥp

2
ê (101)

Moreover,

ê n̂
3 1 e2µp

4na3p 1 e2p
3 2

ê Ĥp
˜̂
h n̂ Ĥp

˜̂
h ê n̂ 5 ê Ĥp

2
ê n̂ (102)

Since the node vector is only a function of Ω, we have

n̂ Ω sinΩÊp cosΩÊp (103)

Therefore,

ê n̂ cos i sinωΩ (104)
3µp

4n 1 e2a3p 1 e2p
3 2

sinω ĥ Ĥp
2 1 4e2 5e2 ê n̂

2 (105)

Hence, the secular effect of the perturbation on the augment of periapsis is

ω
3µp

4n 1 e2a3p 1 e2p
3 2

ĥ Ĥp
2 1 4e2 5e2 ê n̂

2

1 e
2

sinω
ê Ĥp

˜̂
h n̂ Ĥp

˜̂
h ê n̂ 5 ê Ĥp

2
ê n̂

3µp

4n 1 e2a3p 1 e2p
3 2

2 3e2 5 ê Ĥp
2 5e2 ê n̂

2 (106)

19 OF 20
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
N

ov
em

be
r 

7,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
47

45
 



Acknowledgements
This material is based upon work supported by the National Science Foundation Graduate Research Fellowship

under Grant No. DGE 1144083. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Daniel J. Scheeres acknowledges support from grant FA9550-11-1-0188, administered by the Air Force Office of
Scientific Research.

References
1Anselmo, L., and Pardini, C., “Long-term dynamical evolution of high area-to-mass ratio debris released into high earth Orbits,” Acta

Astronautica, 67: 204-216, 2010.
2Bogoliubov, N. N., and Mitropolsky, Y. A., Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon and Breach, 1961.
3Cefola, P. J., Long, A. C., and Holloway, G., “The Long-Term Prediction of Artificial Satellite Orbits,” Presented at the AIAA 12th Aerospace

Sciences Meeting, Washington, D.C., Paper 74-170, 1974.
4Cefola, P.J., Sabol, C., Hill, K., and Nishimoto, D., “Demonstration of the DSST State Transition Matrix Time-Update Properties Using the

Linux GTDS Program,” Presented at the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, Hawaii, 2011.
5Chao, C. C., “Analytical Investigation of GEO Debris with High Area-to-Mass Ratio,” Presented at the AIAA/AAS Astrodynamics Specialist

Conference, Keystone, Colorado, Paper AIAA-2006-6514, 2006.
6Folkner, W. M., Williams, J. G., and Boggs, D. H., “The Planetary and Lunar Ephemeris DE 421,” The Interplanetary Network Progress

Report, 42-178, 2009.
7Fonte, D.J., Implementing a 50 50 Gravity Field Model in an Orbit Determination System, M.S. Thesis, Department of Aeronautics and

Astronautics, MIT, 1993.
8Hu, W., and Scheeres, D. J., “Spacecraft Motion About Slowly Rotating Asteroids,” Journal of Guidance, Control, and Dynamics, 25(4):

765-775, 2002.
9Kyrloff, N., and Bogoliuboff, N., Introduction to Non-Linear Mechanics, Princeton University Press, 1947.
10Lemaı̂tre, A., Delsate, N., and Valk, S., “A web of secondary resonances for large A/m geostationary debris,” Celestial Mechanics and

Dynamical Astronomy, 104: 383-402, 2009.
11Lidov, M. L., “Evolution of Orbits of Planetary Artificial Satellites Under the Influence of Gravitational Disturbances of Outer Bodies,”

Iskusstvennye Sputniki Zemli, 8: 1-45, 1961 [Russian]. Artificial Earth Satellites, 8: 168-207, 1962.
12Liou, J. -C., and Weaver, J. K., “Orbital Dynamics of High Area-to-Mass Ratio Debris and Their Distribution in the Geosynchronous

Region,” Proceedings of the Fourth European Conference on Space Debris, Darmstadt, Germany, Paper ESA SP-587, 2005.
13Lorell, J., and Anderson, J., “Precession rates for an artificial satellite,” Presented at the 13th International Astronautical Congress, Varna,

Bulgaria, 1962.
14McClain, W. D., “A Recursively Formulated First-Order Semianalytic Artificial Satellite Theory Based on the Generalized Method of

Averaging,” Computer Sciences Corporation, Report CSC/TR-77/6010 [in 1992, Wayne McClain updated the blue book. This revised version has
been scanned and is available as an electronic document], Volume 1, 1977.
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