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Abstract—The orbital environment of Resident Space Objects
(RSO) is highly structured and deterministic in general, with
stochastic effects only arising due to mis-modeling and to some
variability in the physical environment in which they orbit. Due
to this RSO can be well modeled as following Hamiltonian
Dynamics, and thus their state space can be expressed as
motion on a symplectic manifold, including their uncertainty
distributions. There has been recent progress in understanding
the fundamental dynamics of phase flows in symplectic systems,
with the preeminent advance being “Gromov’s Non-Squeezing
Theorem,” which can be shown to be similar to the famous
Heisenberg Uncertainty Principle in quantum mechanics. This
paper applies this concept to probability distribution functions
and discusses the resulting implications for their dynamics and
measurement updates.

I. INTRODUCTION

Motion of Resident Space Objects (RSO) in many cases can
be modeled using Hamiltonian Dynamics, due to the detail
with which the physics acting on them are known and the
relative weakness of the non-conservative perturbations (for
objects not in Low Earth Orbit). Thus, the dynamical mapping
of RSO orbit solutions and their attendant probability density
functions can be shown to be symplectic maps, and thus must
conform to the constraints of symplectic topology. Recent
advances in this field [1], [2] have discovered fundamental,
and unsuspected, constraints on the mapping of finite volumes
of phase space – which are at the heart of dynamical mappings
for orbit uncertainty.

To motivate a statement of Gromov’s non-squeezing theo-
rem, consider a closed Euclidean ball B2n(r) in R2n centered
at 0 with radius r, and a symplectic cylinder Z2n defined as

Z2n(r) = B2(r)× R2n−2

We should note that the disc B2(r) is symplectic, which
means its coordinates are a coordiante/momentum pair (qi, pi)
with the constraint q2i + p2

i ≤ r2. Let ϕ : U → V be a
symplectic embedding, where U, V ⊂ R2n. Then the non-
squeezing theorem gives a constraint on the action of ϕ on
the phase volume mapping:

Non-squeezing Theorem: If there is a symplectic embed-
ding B2n(r) ↪→ Z2n(R), then r ≤ R.

In [3], [4], [5], [6] applications of Gromov’s non-squeezing
theorem are made to the study of uncertainty analysis of
Hamiltonian systems. These papers study the implications of
the non-squeezing theorem for probability density functions

that define uncertainty distributions for particle trajectories
in space, with specific applications to spacecraft [3], [6] and
orbit debris predictions [5]. In addition, Gromov’s theorem is
used to develop a constraint on covariance matrices for linear
Hamiltonian systems of the form used in spacecraft navigation
and orbit determination [4].

This paper reviews and combines these previous studies
with a focus on systematically using the notion of symplectic
capacity, and shows that these results can be restated in a form
very similar to the strong uncertainty principle of quantum
mechanics due to Robertson [7] and Schrödinger [8]. In addi-
tion, we derive formulae to update the symplectic width of a
Hamiltonian Dynamical System’s probability density function
using Bayes’ Theorem, thus showing how these concepts can
be generalized to navigation problems, potentially making the
Gromov width of a distribution into a metric for evaluating
the quality of knowledge of a state. In our analysis we find
it important to distinguish between two types of probability
distribution functions, the classical distributions which are
non-zero over all of phase space and an alternate form which
have a compact basis, meaning that they are only non-zero
over a finite volume in phase space.

II. NOTATION AND TERMINOLOGY

A generic point in the phase space of an n degree of
freedom system is denoted as X = (q, p) ∈ Rn × Rn = R2n,
where we have set q = (q1, ..., qn), p = (p1, ..., pn). When
matrix calculations are performed, X, p, q are always viewed
as column vectors.

The symplectic group of R2n is denoted by Sp(n) and is
the group of all real 2n×2n matrices S such that STJS = J
(or, equivalently, SJST = J) where

J =
[

0 I
−I 0

]
and 0 and I are the n × n zero and identity matrices,
respectively.

With the above definitions we state that a Hamiltonian Dy-
namical System is defined as a set of 2n differential equations
defined using a Hamiltonian function H(X, t) according to
the rule:

Ẋ = J
∂H

∂X
The solution flow is a one-parameter group of symplecto-
morphisms and thus represent volume-preserving mappings of
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phase space from some initial distribution to a final distribu-
tion. When these distributions have non-zero volume they will
be subject to Gromov’s Theorem.

III. STATISTICAL DESCRIPTION OF HAMILTONIAN
DYNAMICAL SYSTEMS

A. Probability Density Functions

The uncertainty of a Hamiltonian state X , such as computed
when tracking a spacecraft, can be characterized using a
probability density function (pdf), denoted as ρ(t,X). Given
an initial pdf, ρ(to, X), we obtain a one-parameter family of
pdf’s, parameterized by time. A probability density function
ρ : R× R2n → R is a function that satisfies the properties:
• ρ(t,X) ≥ 0 for X ∈ R2n.
•
∫

R2n ρ(t,X)dX = 1.
The pdf forms the basis of spacecraft navigation, and it

generates the most important quantities for these systems. The
main statistical application of the pdf is found by interpreting
this function as a generator of the probability of finding the
object within a certain volume of phase space. Given a set in
phase space, B ⊂ R2n, with a non-zero volume, Vol2n(B) > 0,
the probability of the state lying in this set is simply computed
as the 2n-dimensional integral of the pdf over the set B,

P (B) =
∫
B
ρ(X)dX (1)

We define
Vol2n(B) =

∫
B
dX

to represent the 2n dimensional volume of the set B in phase
space. We note that there can be an infinite number of sets
that may have a given probability, although the probability of
each set has a characteristic value.

Given a pdf, the major interest of classical spacecraft
navigation is in the first few moments of that distribution.
The first moment generates the mean of the state, which is
generally taken to represent the most likely solution. The
second moment generates the covariance of the state, which
is taken to represent the relative uncertainties in the state.
Higher order moments can also be defined, but are not used
that frequently in orbital mechanics. Current topics of interest
in the field of astrodynamics, however, have focused back on
the fundamental measurement and state pdf, motivating our
more general discussion of this topic.

There are three key operations that one may perform on
the pdf, which can change the mean and covariance of the
states. The first fundamental operation is that of dynamical
propagation. In this work we disregard the stochastic effect
of accelerations on a dynamical system for simplicity, and
for definiteness as such additional effects can destroy the
symplectic properties of the dynamics. In the absence of such
stochastic effects the pdf is conserved at each evolving point
in phase space.

We can define ρ as a solution of an initial value problem for
PDE’s; i.e., given ρ0(t,X), ρ : R2n × R → R is the solution

of a PDE IVP
Dρ

Dt
=
∂ρ

∂t
+ ẋ · ∇ρ = 0, ρ(X) = ρ0(X).

We will suppress the time dependence in the following. Thus
we note that the total time rate of change of the pdf is
zero under our deterministic dynamical assumptions, implying
that the probability density function is conserved along each
trajectory for a Hamiltonian system. Due to this fact the
probability of a set is an integral invariant. Thus, even though
the set itself will propagate over time, the value of probability
associated with a set is constant unless some other operation
is applied to the pdf.

Whereas the pdf is conserved along the symplectic flow,
which represents dynamical propagation of the system state,
it may change discontinuously, at a moment in time, following
a physical measurement of the system. We define an associated
probability density function for a measurement of a state as a
function of an abstract observation, z ∈ R and a measurement
function H(X) : R2n → R. In the absence of noise we have
a correspondence between the observation of a state and the
measurement function: H(X) = z. In real systems, there is
additional uncertainty associated with the given observation,
may also be described with a pdf. Usual assumptions are that
the uncertainty has zero mean relative to the true observation,
and that the most important aspect of the uncertainty is
described by its second moment. We will simply describe a
given observation by a measurement pdf, denoted as ρH(X),
and note that it has a mean, variance, and other specific
structures.

z =
∫
∞
H(X)ρH(X)dX (2)

σ2 =
∫
∞

(H(X)− z)2ρH(X)dX (3)

Other modifications can be added, such as the inclusion of
unknown and statistically defined biases in the measurement
pdf.

We use a simple Bayesian update rule for incorporating
measurement information into the state pdf:

ρ′(X) =
ρ(X)ρH(X)∫

∞ ρ(X)ρH(X)dX
(4)

Finally, we are also interested in computing conditional
pdfs, which generates a pdf exclusively for a sub-state. Assume
we split our general state X = [x1, x2, . . . , xj , . . . , xn], where
xi = (qi, pi) and forms a symplectic pair. The marginal pdf
of xi is then:

ρ(xi) =
∫
∞
ρ(X)dxj 6=i (5)

where the integral occurs over all states other than xi. We
can arbitrarily choose different combinations of which states
to integrate over and which to remain free.

Most classical pdf descriptions are non-zero over the entire
R2n space. Thus the volume to generate a unity probability is
infinite for this class of pdf. An alternate, and in some sense
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more realistic, approach is to define the pdf to be non-zero only
over a volume of finite measure, meaning that ρ has compact
support. This respects the obvious fact that an object does not
have a probability to exist at all points in space, but in general
is usually strongly localized.

We will need to distinguish between these two types of
pdfs in the following, classical distributions that have non-
zero probability over all space and finite volume distributions
that only have non-zero probabilities over limited regions of
space. Just as with state pdfs, measurement pdfs can also be
defined to be non-zero over a finite volume set (e.g., [9]) or,
what is more usual, be defined over all space.

B. Classical Normal Distributions

We will exclusively use the Gaussian, or Normal, distribu-
tion as a representative of the class of distributions which have
non-zero probability over all space. For space applications, the
Gaussian pdf is by far the most applicable and popular. We
provide a representation of this pdf as:

ρ(X) =
1

(2π)n
√
|P |

exp
[
−1

2
(
X − X̄

)
Λ
(
X − X̄

)]
(6)

where Λ = P−1 is defined as the information matrix and
P is the covariance matrix. The dynamic evolution of a
Gaussian pdf, in general, will not remain Gaussian (except in
the restricted case of a linear dynamical system). Thus a non-
linear dynamics mapping of the state will destroy the Gaussian
form in general, although it can still be used to describe the
initial conditions of the pdf (e.g., [10]).

To deal with sets of finite volume, we must restrict ourselves
to sets that have less than full probability, meaning that all of
our applications will not address all possible states, but only
a subset of the possible states. Again, there are arbitrary ways
in which we can choose our sets, but the most meaningful and
descriptive approach chooses states that have a density greater
than or equal to some value. These are obviously defined as
ellipsoids via:

Er =
{
X|
(
X − X̄

)
Λ
(
X − X̄

)
≤ r2

}
(7)

It is a classical computation to find the probability associated
with such a set.

C. Finite Volume Distributions

The pdfs for finite volume distributions are defined such that
ρ(X) takes on all of its positive values over a finite volume
of phase space. These are not commonly used, but from a
physically motivated perspective are more realistic than the
above Gaussian distribution which retains non-zero probability
over all of phase space. The probability outside the intersection
of these finite sets is automatically ruled out; this fact makes
finite volume distributions computationally superior, as one
no longer need integrate over the all of space. Despite these
advantages, the level of definiteness which we can bring to the
discussion in this case decreases greatly, due to the lack of a
generally accepted analytical form for these pdfs. Thus, in the
following we will only deal with their abstract properties.

In the following we stipulate that the set for which the pdf
takes on non-zero values is a connected, compact set in phase
space. We will denote this minimal set as B and note that it will
have a volume VB = Vol2n(B) <∞ and that

∫
B ρ(X)dX = 1.

In addition to these, we will also assume that ρ(X) = 0 if
X 6∈ B (note that this eliminates sets of measure zero where
ρ(X) is non-zero).

Given this definition of a finite volume set, we can introduce
a more conservative parameterization of this pdf by introduc-
ing an ellipsoid, denoted by EB, which has a finite volume
and which contains the set B. Selection of this ellipsoid is
not unique, and we do not consider how it is constructed. We
note that ρ(X) ≥ 0 over the set EB and that

∫
EB ρ(X)dX = 1

as before. Selection of this bounding ellipsoid is conservative
in the sense that the volume of this ellipsoid will always
be greater than or equal to the volume of the original set:
Vol2n(B) ≤ Vol2n(EB). The consequences of this conservative
bound will be seen later when we discuss the Gromov width
of our distributions. However, in other situations, it is a
convenient way to introduce analytical constraints on these
finite volume pdf distributions. An alternate approach is to
construct finite-volume distributions with cut-off Gaussians:
Renormalized Gaussian functions set to zero outside a cer-
tain confidence ellipsoid. In such a case, the “conservative”
ellipsoid is actually tight.

IV. SYMPLECTIC CAPACITIES AND THE GROMOV WIDTH
OF DISTRIBUTIONS

Gromov’s theorem can be used to develop a constraint on
covariance matrices for linear Hamiltonian systems of the
form used in spacecraft navigation and orbit determination.
In particular, it is proven in [4], Theorem 1, p.688, that the
symplectic width wL(E) of the Gaussian uncertainty ellipsoid
E : XTP−1X ≤ 1 is related to the covariance matrix Pii in
the qi, pi variables by the inequality

|Pii| ≥
(
wL(E)
π

)2

. (8)

where |Pii| is the determinant of the covariance matrix pro-
jected onto the sub-state xi = (qi, pi).

In the following subsections we revisit this earlier calcu-
lation and show that it can be derived using alternate ap-
proaches that have a deeper connection with the notion of the
Heisenberg Uncertainty Principle and Quantum Mechanics in
general. We first define and describe the concept of symplectic
capacities and the Gromov width of a distribution in phase
space.

A. The symplectic capacity of ellipsoids

Gromov’s theorem can be restated as follows: Let Pj be
a symplectic plane (for instance any plane of coordinates
qj ,pj . The projection of the ball B2n(r) on Pj is a circle
with area πr2. Let us now apply a canonical transformation
Φ to B2n(r), it becomes a new phase space set Φ(B2n(r))
which can have a very different shape from the origin ball (it
will however have the same volume, in view of Liouville’s
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theorem). Gromov’s theorem tells us that the projection of the
distorted ball Φ(B2n(r)) on the symplectic plane Pj will have
area at least πr2.

All known proofs of Gromov’s theorem are notoriously
difficult, which may explain why the non-squeezing property
wasn’t known before the mid 1980’s. In our context the
important thing is that this theorem makes it possible to define
a new geometric notion, that of the symplectic width wL of
an arbitrary subset of phase space. Such a symplectic width
is constructed as follows: Let Ω be a set in R2n. Assume first
that there is no canonical transformation mapping a phase-
space ball B2n(r) inside Ω, no matter how small its radius r
is. We will then write wL(Ω) = 0. (A typical example of this
situation is when Ω has dimension smaller than 2n as follows
from Liouville’s theorem.) Assume next that we can find at
least one canonical transformation sending some ball B2n(r)
within this set Ω. The supremum R of all such radii r is
called the symplectic radius of Ω and we define the symplectic
width by wL(Ω) = πR2. The symplectic width has the three
following properties:

wL(Ω′) ≤ wL(Ω) if Ω′ is a subset of Ω; (9a)
wL(f(Ω)) = wL(Ω) if f is a canonical transformation;

(9b)

wL(λΩ) = λ2wL(Ω) for every real number λ. (9c)

It has in addition the following fundamental property:

wL(B2n(r)) = πr2 = wL(Z2n
j (r)). (10)

While the three first properties listed above are satisfied by
many functions (for instance (Vol2n(Ω))1/n) where Vol2n(Ω)
is the volume of Ω if Ω is measurable), the fourth property is
highly non-trivial, because its proof requires the non-squeezing
theorem and is actually equivalent to it. More generally, one
calls symplectic capacity any function c assigning to a subset
Ω a finite or infinite number c(Ω) such that properties (9)–
(10) are satisfied (Ekeland and Hofer [2]). It turns out that
there exist infinitely many symplectic capacities, and that
the symplectic width wL is the smallest of all symplectic
capacities. A very interesting symplectic capacity cHZ was
constructed by Hofer and Zehnder in [11]. It has the property
that when Ω is a bounded and convex set in phase space then
we have

cHZ(Ω) =
∮
γmin

pdq (11)

where pdq = p1dq1 + · · · + pndqn and γmin is the shortest
(positively oriented) Hamiltonian periodic orbit carried by the
boundary ∂Ω of Ω.

A remarkable fact is that all symplectic capacities agree
on phase space ellipsoids. Let us describe this fact more
in detail. Let P be a positive definite real 2n × 2n matrix
(and can be considered to be equivalent to the covariance
of our distribution); the matrix JP being equivalent to the
antisymmetric matrix P 1/2JP 1/2 the eigenvalues of JP are of
the type ±iλj with λj > 0. The positive numbers λj are called

the “symplectic eigenvalues” of P . We will always arrange
these numbers λj in decreasing order:

λmax = λ1 ≥ λ2 ≥ · · · ≥ λn = λmin (12)

and call the sequence

SpecSp(P ) = (λ1, ..., λn)

the symplectic spectrum of P . Since JP−1 has the same
eigenvalues as (JP−1)−1 we have

SpecSp(P−1) = (λ−1
n , ..., λ−1

1 ).

Proposition 1: Let Ω+ and Ω− be the phase space ellip-
soids defined by XTPX ≤ 1 and XTP−1X ≤ 1, respec-
tively. For every symplectic capacity c we have

c(Ω+) =
π

λmax
, c(Ω−) = πλmin. (13)

Proof: See e.g. [11].
A classical result, due to Williamson [12], is the following:

there exists S ∈ Sp(n) such that

STPS =
[
Λ 0
0 Λ

]
(14)

where Λ = diag [λ1, ..., λn] (see for instance Hofer and Zehn-
der [11] for a modern proof). It follows that the transforms of
the ellipsoids Ω+ and Ω− are represented by, respectively

n∑
j=1

λj(q2j + p2
j ) ≤ 1 and

n∑
j=1

λ−1
j (q2j + p2

j ) ≤ 1.

B. The ε-Condition

Let P be a positive definite real 2n × 2n matrix; we will
make extensive use of the following condition on P :

If there exists an ε > 0, such that the eigen-
values of the complex Hermitian matrix P + iεJ
are all non-negative (which we write for short as
P + iεJ ≥ 0) we will say that P “satisfies the ε-
condition”.

That P + iεJ is Hermitian follows from the relations P ∗ =
PT = P and (iJ)∗ = (−i)JT = iJ . To say that P satisfies
the ε-condition is equivalent to saying that

Z∗(P + iεJ)Z ≥ 0 (15)

for all complex vectors Z = X+iY in C2n. We observe that if
P satisfies the ε-condition then it also satisfies the ε′-condition
for every ε′ ≤ ε. To see this, set ε′ = rε with 0 < r ≤ 1. We
have

P + iε′J = (1− r)P + r(P + iεJ)

hence P + iε′J ≥ 0 since (1− r)P ≥ 0 and r(P + iεJ) ≥ 0.
Theorem 2: Let Ω− be the ellipsoid XTP−1X ≤ 1. The

matrix P satisfies the ε-condition for every ε ≤ 1
π c(Ω

−). In
particular

P +
i

π
c(Ω−)J ≥ 0. (16)
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Proof: Let S be a symplectic matrix diagonalizing P
following formula (14). We have

ST (P + iεJ)S = STPS + iεSTJS = STPS + iεJ

and hence

ST (P + iεJ)S =
[

Λ iεI
−iεI Λ

]
.

The condition P+iεJ ≥ 0 is equivalent to ST (P+iεJ)S ≥ 0;
using the equality above this condition is easily seen to be
equivalent to λ2

j − ε2 ≥ 0 for 1 ≤ j ≤ n, that is to λj ≥ ε
since the λj are nonnegative. It follows that

c(Ω−) = πλn ≥ πε

in view of the second formula (13). The result follows.

C. A Classical Uncertainty Principle

Assume that the orbit distribution is initially given by a
multivariate Gaussian distribution with covariance matrix P
and average X̄:

ρ0(X) =
1

(2π)n
√
|P |

exp
[
−1

2
(X − X̄)P−1(X − X̄)

]
.

To that distribution we associate the uncertainty ellipsoid

E0 :
1
2

(X − X̄)P−1(X − X̄) ≤ 1.

Applying the second formula (13) to P the symplectic capacity
of E0 is

c(E0) = πλPmin

where λPmin is the smallest symplectic eigenvalue of P .
Rearranging the coordinates (q, p) as

(q1, p1, q2, p2, ..., qn, pn) we can write the covariance
matrix as

P =


P11 P12 · · · P1n

P21 P22 · · · P1n

· · · · · · · · · · · ·
Pn1 Pn2 · · · Pnn


where the Pij are the symmetric 2× 2 blocks

Pij =
[
σqiqj

σqipj

σqipj σpipj

]
;

the quantities σqiqj
, σqipj

, σpipj
are the covariances in the

indexing variables.
As already noticed in [3], in usual navigation practice

the navigation performance of a spacecraft is specified as a
function of the state on some lower dimensional subspace
on which probabilities are computed. We restate this in the
following form:

Theorem 3: Assume that P satisfies the ε-condition.
(i) Then

σqiqi
σpipi

≥ (σqipi
)2 + ε2 for i = 1, 2, ..., n. (17)

(ii) In particular we recover the Hsiao–Scheeres formula

|Pii| ≥
(
c(E0)
π

)2

.

Proof: The non-negativity of the Hermitian matrix P +
iεJ implies that[

σqiqi
σqipi

+ iε
σqipi − iε σpipi

]
≥ 0

(see de Gosson [13]); since σqiqj
≥ 0 and σpipj

≥ 0 this is
equivalent to

σqiqi
σpipi

− (σqipi
+ iε)(σqipi

− iε) ≥ 0

which is the same thing as (17). The statement (ii) follows
from (17) and Theorem 2.

D. Propagation of Uncertainty: the Linear Case

Consider as in Hsiao and Scheeres [4] the dynamical system

Ẋ(t) = A(t)X(t) , X(t0) = X0. (18)

We write its solution in the form X(t) = Φ(t, t0)X0, since the
system is linear the operator Φ(t, t0) is also linear and can be
identified with a 2n× 2n matrix. In what follows we assume
that the product JA(t) is symmetric (which always follows
for a Hamiltonian linear system). It follows that A(t) belongs
to the Lie algebra of Sp(n) and that (18) is thus equivalent to
the Hamiltonian system

Ẋ(t) = J
∂H

∂X
(X(t), t)

for the special case in which H is the (time-dependent)
Hamiltonian function

H(X, t) = −1
2
XT (JA(t))X.

The matrices Φ(t, t0) are therefore symplectic for all t and t0.
We denote by P0 the covariance matrix at initial time t0.

Then the covariance matrix at arbitrary time t is

P (t) = Φ(t, t0)P0Φ(t, t0)T .

Theorem 4: Assume that P0 satisfies the ε-condition. Then
P (t) also satisfies the ε-condition. In particular

σqiqi
(t)σpipi

(t) ≥ (σqipi
(t))2 + ε2 for i = 1, 2, ..., n.

Proof: It immediately follows from the observation that

P (t) + iεJ = Φ(t, t0)(P0 + iεJ)Φ(t, t0)T

since Φ(t, t0)JΦ(t, t0)T = J because Φ(t, t0) is symplectic.

E. The case of completely integrable systems

We add the following observations as a counterpoint and
generalizations of our results for ellipsoids. As many important
systems can be described as integrable systems, it is relevant
to discuss the application of Gromov’s Theorem to these cases
as well.

Recall that a physical system with Hamiltonian function
H is called integrable (or Liouville integrable, or completely
integrable) if there exists a canonical transformation (q, p) =
Φ(I, θ) such that H(q, p) = H(Φ(I, θ)) = K(I). This is
equivalent to being able to obtain a set of n functions that are
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pairwise in involution with respect to the Poisson bracket. In
particular, the Keplerian 2-body problem falls into this class. In
this case the Hamilton equations reduce to the simple system

dθj
dt

=
∂K

∂Ij
,
dIj
dt

=
∂K

∂θj
= 0

whose solutions are

θj(t) = ωj(Ij(t0))(t− t0) + θj(t0) , Ij(t) = Ij(t0). (19)

Recall that these are the action-angle variables and topologi-
cally represent motion on an n-torus.

Let us now introduce the symplectic polar coordinates

Qj =
√

2Ij cos θj , Pj =
√

2Ij sin θj ;

one readily verifies that the Jacobian matrix of the transforma-
tion Ψ(I, θ) = (Q,P ) is symplectic, hence Ψ is a canonical
transformation (we remark that in contrast the passage to usual
polar coordinates is not canonical). In the coordinates (Q,P )
the solutions (19) become

Qj(t) =
√

2Ij(t0) cos θj(t) , Pj(t) =
√

2Ij(t0) sin θj(t)

and we have Qj(t)2 + Pj(t)2 = 2Ij(t0) hence, in these
coordinates, the motion takes place on the torus

Tn = S1
1(R1)× · · · × S1

n(Rn)

where S1
j (Rj) is the circle with radius Rj in the qj , pj plane

and Rj =
√

2Ij(t0). Let us now consider the associated
polydisk

Dn = D1
1(R1)× · · · ×D1

n(Rn)

where D1
j (Rj) is the polydisk Qj2 + Pj

2 ≤ Rj . One proves
(Polterovich [14], Theorem1.1C and Section 4.3) that the
symplectic width of that polydisk is

wL(Dn) = πR2 , R = min
1≤j≤n

Rj .

Assume for clarity that R = R1. In view of Gromov’s
non-squeezing theorem and the definition of the symplectic
width, the supremum of the radii of all phase space balls
we can squeeze inside Dn is precisely R1. Returning to the
original coordinates (q, p) it follows, in view of the canonical
invariance of symplectic capacities and the fact that we have
only used canonical changes of variables, that at any moment
the area enclosed by the projection of the trajectory passing
through (q0, p0) at initial time t0 on the x1 = (q1, p1) plane
is at least πR2 = 2πIj(t0).

V. DEFINITIONS AND MODIFICATIONS OF SYMPLECTIC
WIDTH FOR PROBABILITY DENSITY FUNCTIONS

Having defined and discussed the symplectic (Gromov)
width of a finite set in some detail, we now move on to the
second main point of this paper. We wish to understand how
to define the symplectic width of a given pdf distribution, or
sub-distribution, and then how such a width is modified under
the action of dynamics or a state measurement.

We separately consider our two forms of pdfs. First we
consider classical normal distribution pdfs. Following that we
consider finite volume distribution pdfs.

A. Classical Normal Distributions

Assume again the Gaussian, or Normal, distribution as a
representative of the class of distributions which have non-
zero probability over all space:

ρ(X) =
1

(2π)n
√
|P |

exp
[
−1

2
(
X − X̄

)
Λ
(
X − X̄

)]
(20)

where Λ = P−1 and is defined as the information matrix.
To deal with sets of finite volume, we must restrict ourselves
to sets that have less than full probability, meaning that our
applications will not address all possible states, but only a
subset of the possible sets. Again, there are arbitrary ways in
which we can choose our sets, but the most meaningful and
descriptive approach chooses states that have a density greater
than or equal to some value:

Er =
{
X|
(
X − X̄

)
Λ
(
X − X̄

)
≤ r2

}
(21)

For definiteness we take r = 1 in the following.
Gromov Width Computation: Given an ellipsoid that

represents the probability of finding the state within a certain
volume, we can apply our previous results to compute the
Gromov width of this ellipsoid. Borrowing the concept of the
symplectic eigenvalues of the covariance P , defined earlier, we
note that the smallest of these, λPmin, is directly proportional
to the Gromov width, or

ωL(E1) = πλPmin

For a given momentum coordinate pair with its individual
covariance

Pii =
[
σqiqi σqipi

σqipi
σpipi

]
The symplectic eigenvalue equals the square root of the
determinant, λi =

√
σqiqi

σpipi
− σ2

qipi
. Thus, the Gromov

width of an ellipsoid distribution in phase space is

ωL(E1) = πmin
i
|Pii|1/2 (22)

Thus, in this context the Hsiao-Scheeres formula[4] is trivially
derived as |Pjj | ≥ mini |Pii|, noting that this inequality is
preserved over symplectic, linear mapping of the covariance.
The deeper result is that the Gromov width remains invariant
under non-linear mapping of the distribution as well.

Mapping in time: We note that the dynamical map-
ping of a Hamiltonian system in time is always a canoni-
cal transformation (equivalently a symplectomorphism). Thus,
the symplectic width is conserved through these mappings,
whether they are linear or non-linear. If the time mapping is
linear, denoted as X(T ) = Φ(T, t)X(t), then the ellipsoidal
region will directly map into another ellipsoidal region. Even
though the covariance matrix will be altered by the mapping,
transforming to ΦPΦT , we note that the symplectic width will
remain unaltered. If the time mapping is non-linear, then the
ellipsoidal distribution of the original phase volume is lost and
becomes distorted. In such cases, the moments of the distribu-
tion can be recomputed and a new mean and covariance can

2055



be defined (see [10] for a detailed description of this), however
the Gromov width associated with this new covariance will in
general be different than the previous one. The Gromov width
associated with the initial volume distribution associated with
the initial pdf will remain invariant, however.

Effects of Measurements: Now consider the effect which
a measurement has on the pdf distribution and the correspond-
ing symplectic width. In accordance to the normal distribution
which we assume for the state we also assume a standard
normal distribution for the measurement pdf, which assumes
that the current state is linearized about the current mean.
Applying Bayes’ rule for the update of the pdf the initial
main task is comprised of evaluating the sum of quadratics
and re-expressing it in a similar form, leading to the updated
information matrix:

Λ′ = Λ +
1
σ2
HXH

T
X (23)

This equation explicitly shows how new information is incor-
porated into the information matrix, and then as P ′ = Λ′−1,
how it is incorporated into the covariance matrix. By re-
cursively applying this update, it is possible to increase the
information content relevant to a state from zero to a value
which allows inversion, assuming that the different HX form
a linear basis.

Thus, resulting from any measurement is an increase in
the information (decrease in the covariance) and a shift in
the mean. Details on how the nominal solution is used to
update the estimate for the next measurement are of interest,
but are beyond the current scope of this work. Rather, this
result is presented to show how the information matrix, and
consequently the Gromov width at a given level of probability,
decreases when measurements are obtained. For this classical
formulation, there is no theoretical limit to how small the
Gromov width can become without introducing relativistic
constraints.

Considering the general formula for the update of the
information matrix, it is simple to see why this occurs.
The new information matrix always consists of the previous
matrix summed with a positive semi-definite term of the form
HXH

T
X . Thus, the eigenvalues of the information matrix will

only grow in general, causing the eigenvalues of the covariance
matrix to shrink.

If, instead, we choose to fix the initial volume over which
we compute the updated Gromov width then we find that the
Gromov width is conserved (trivially) although the action of a
measurement will, in general, be to increase the probability of
finding the state within that initial volume, although there may
be cases where the probability is diluted if the measurement
places the object outside of the nominal volume. For these
classical distributions, then, we find a simple relation between
a decreasing Gromov width for a given probability when
measurements are added, or an increasing probability (in most
cases) for a fixed Gromov width when measurements are
added.

B. Finite Volume Distributions

Now let us assume that the set B1 has finite volume and
P (B1) = 1, so that the set B1 contains all possible values
of the state, excluding some set of measure zero which we
ignore. Assume we can compute the Symplectic Capacity of
B1, ωL(B1). An important concept for this class of distribution
is the existence of a larger set B′1 which contains the set B1,
or B1 ⊂ B′1, allowing for the definition of conservative limits
on the set B1. The choice of B′1 is arbitrary, meaning that we
can choose distributions that are analytically tractable, such
as the ellipsoid as discussed above. In this case we know that
the full distribution lies within such an ellipsoid and that this
object can conservatively stand-in for all possible values of
the state. The existence of this larger set will be invoked as
convenient in the following discussions.

Gromov width limit: Consider the conditional distribution
over the set x1 ∈ B1.

ρ1(x1) =
∫
∞
ρ(X)dx2dx3 . . . dxn (24)

=
∫
B1

ρ(X)dx2dx3 . . . dxn (25)

The resultant pdf ρ1 has a finite support over the symplectic
plane x1 = (q1, p1), and thus a distribution over this region
can be defined, B1

1 . Technically, this is the projection of the
entire set onto the x1 plane, as any region of x1 that has a
non-zero probability over the other planes xj>1 is incorporated
into this region. Conversely, if there is a coordinate value in
the x1 plane that lies completely outside of all possible values
in B1, then this retains a zero probability and lies outside of
the projected set. We assert that the proper interpretation of
the Gromov NST is that the area of the projected set, B1

1 , must
be greater than or equal to the Gromov width of the original
set B1, or V2(B1

1) ≥ ωL(B1), which is a further generalization
of Eqn. 8, where V2 represents the 2-dimensional “volume”
(area) of the 2-dimensional set B1

1 . The same result holds
for any other symplectic plane, of course. Our assertion is
made with the caveat that we are referring to the symplectic
manifold (R2n, ω0), where ω0 is the standard symplectic form
ω0 = dq ∧ dp. We note that Gromov’s theorem is valid for
arbitrary symplectic manifolds (M,ω), which is only locally
symplectomorphic to (R2n, ω0).

Now consider a set B′1 defined by an ellipsoid specified as

E1(X̄,Λ) =
{
X|(X − X̄)TΛ(X − X̄0) ≤ 1

}
such that B1 ⊂ E1. We can also define the projection of this set
onto the x1 plane, and in fact can directly use the result given
in Eqn. 22. By the basic properties of symplectic capacities
we know that V2(E1) = π

√
|Λ11| = ωL(E1) ≥ ωL(B1).

Additionally we know that V2(E1) ≥ V2(B1
1) ≥ ωL(B1).

However, we do not have specific constraints on the ordinal
relation between ωL(E1) and V2(B1

1).
Mapping in time: In the current application of mapping

entire regions of unity probability, the conservation of the
pdf combines with Liouville’s Theorem to imply that, while
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the physical distribution of the set is altered in phase space,
its total volume and Gromov width are conserved. Also, a
general bounding set B′1 continues to bound the original set.
However, due to non-linear dynamics the bounding ellipsoid
E1 is not conserved as an ellipsoid in general, but will distort
into a non-ellipsoidal shape and destroy the simple projection
results stated above. Thus, while the concept of a bounding
ellipsoid is useful at any given instant, it is not conserved as
time progresses except for a linear mapping.

Measurement incorporation: There are a few different
situations to consider for the measurement update. First, con-
sider the situation where the measurement pdf is in a normal,
or Gaussian, form. Applying Baye’s Theorem we can compute
the updated pdf for our object:

ρ′(X) =
ρ(X)ρH(X)∫

∞ ρ(X)ρH(X)dX

Since the normal distribution has tails that extend to infin-
ity, we find that the updated pdf is defined over the exact
same phase volume set B1, and that the Gromov width is
unchanged in this situation. The distribution of probability is
redefined within this volume set, but the extent of the non-
zero pdf and the bounding set B′1 remain unchanged. Repeated
measurement can drastically change the distribution within
this phase volume and its time mapping, but once a region
has a finite probability a Gaussian measurement will never
change its Gromov width. Furthermore, for a finite volume
distribution the probability of finding the state within this
distribution is always equal to unity. Thus, for a Gaussian
measurement incorporated into a finite volume pdf both the
total probability of the distribution is conserved as well as
the Gromov width of that distribution. The only thing which
changes is the redistribution of the pdf within these regions.

Now suppose we have a measurement pdf of a more general
form, such that is also has a finite volume on which it is non-
zero, characterized by the set in phase space Bz . The resultant
pdf ρ′ will be defined over a non-zero probability set Bz1 =
Bz ∩ B1. We find four different possibilities as a function of
what set its intersection with B1 lies within.

1) If Bz1 = ∅, the empty set, the hypothesis that the
measured object and the original object are consistent
with each other is false.

2) If B1 ⊂ Bz then Bz1 = B1 and the symplectic
width of the distribution is unchanged, although the
distribution of probability does change, similar to the
classical measurement case.

3) If Bz ⊂ B1, then Bz1 = Bz and the Gromov width is
completely determined by the measurement pdf and its
associated volume Bz and wL(Bz1) ≤ wL(B1).

4) If B1 6⊂ Bz1 and Bz 6⊂ Bz1, meaning that the
two original distributions have regions where they do
not overlap, the Gromov width decreases, wL(Bz1) <
min{wL(Bz), wL(B1)}, and there is a change in the
distribution probability.

We note that even for pdfs defined over a finite volume,
the rules on the Gromov width change if instead of looking at

volumes of unity probability one considers volumes of non-
unity probability. Consider a set Br such that P (Br) = r < 1
and perform a measurement update on the overall distribution
(assumed to be a Gaussian measurement pdf for definiteness).
While the given set Br is unchanged, the probability density
within it is changed and the new probability associated with
this set is not conserved. If the probability is to be conserved,
the Gromov width will decrease in general as it will corre-
spond to a different, more concentrated set in phase volume.
This was seen explicitly in the discussion on linear systems
with Gaussian distributions.

VI. CONCLUSIONS

This paper describes the connection between uncertainty
distributions, as represented by probability density functions,
and symplectic capacities for Hamiltonian Dynamical Sys-
tems. We review some new derivations of the constraint on co-
variance matrices that arises from topological considerations,
previously reported elsewhere. We also provide an explicit
discussion of how the symplectic width of probability distribu-
tions becomes modified under the action of measurements and
find situations where the symplectic width can be conserved
under measurement.
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