COE CST Fourth Annual Technical Meeting

Autonomous Rendezvous and Docking

Dr. Penina Axelrad Dr. Jay McMahon Heather LoCrasto Steve Gehly Caleb Lipscomb

October 29-30, 2014 Washington, DC

Agenda

- Team Members
- Task Description
- Schedule
- Goals
- Results
- Conclusions and Future Work

Team Members

- PI: Dr. Penina Axelrad, University of Colorado Boulder
- Dr. Jay McMahon
- Students: Aerospace Engineering Sciences Heather LoCrasto (MS student) Steve Gehly (PhD student) Caleb Lipscomb, Ricky Rohr (Undergraduate students)
- Industry Partner: Ball Aerospace

Task Description

- Understand the requirements for autonomous rendezvous and docking of commercial spacecraft in LEO for the purposes of material transfer, servicing, or retirement.
- Develop description, requirements, and list of key technologies for ARD mission phases.
- Provide tools for the FAA to establish architecture, requirements, and processes for future ARD operations.
- Evaluate FLASH LIDAR as key technology for ARD and investigate performance for relative navigation and attitude estimation.

Schedule for task completion

- No-cost extension provided through May 2015.
- Complete remaining mission phase requirements and technology gap analysis by Dec 2014.
- Complete LIDAR image processing to be integrated with OLTAE algorithms by Dec 2014.
- Establish complete case study for LIDAR use in approach phases by February 2015.
- Evaluate methods and requirements for noncooperative unknown targets by May 2015.

Goals

- Motivation:
 - Standards are required to enable the FAA to license multiple vendor vehicle systems to make orbital rendezvous and docking a routine and safe activity.
 - These standards must be established to define appropriate requirements for safe operations without specifying a particular design.
 - Increase autonomy, improve flexibility, robustness, reduce cost
- Goals
 - Develop an approach for ARD standards and identify/resolve key technology gaps for automated rendezvous and docking of vehicles in LEO/GEO encompassing approach trajectories, sensing, estimation, guidance and control, and human interaction.
 - Systems engineering analysis for draft standards
 - Feasibility of Flash LIDAR based relative position and attitude

Commercial AR&D Mission Types

Increasing Challenge

Knowledge	Marked	Drawings	None	
Controlled	Active	Passive Stable	Tumbling	
Cooperative	Maneuvers	Measurements 2-way Comm	2-way Comm	None

Configuration	Knowledge	Controlled	Cooperative
Refuel/Material	efuel/Material Marked		2-way Comm
Delivery	Drawings	Active	None
Donain/Dating	Marked	Dessive Stable	None
Repair/Retire	Drawings	Passive Stable	
Debris Disposal	None	Tumbling	None

Mission Phases

Phase	~Range	Objective	Sensor	Safety
Launch	>10,000 km	 Insert chaser into orbit in same orbit plane, below target 	GPS	Resume mission on nav failure
Phasing	>5 km	 Reduce range to target Chaser acquires initial aimpoint for approach 	GPS	
Homing/Cl osing	3500- 250 m	RelnavReach then enter approach ellipsoid	Radar, Lidar, RGPS	Preclude collisionMaintain target sensing
Final Approach	0-250 m	 Chaser achieves docking capture conditions Interfaces within docking range 	Optical, RF, LIDAR	 Preclude collision Low velocity Keep-out zone Avoid plume impingement

Key Concepts for Requirements

- Availability of sensors for long-range phases not required 100% because hold can be used
- Closing phases require 100% availability
- Use of passive-safe trajectories in final approach phase.
 - When aimpoint is at the target
 - Thruster failure only to off
 - Loss of communications or sensors (stops thruster firing)
- Timing of ARD is flexible if visual sensors and ground monitoring are not required
- Max relative velocity for final approach, mating, & joint maneuvers, must be determined to avoid damage to vehicles

Flash LIDAR Use for ARD

- Flash LIDAR instrument serves as a "3D Camera" with intensity and range for each pixel
- High frame rates (up to ~30 Hz)
- Eliminates slewing/pointing/search requirements of singlebeam systems
- Not dependent on ambient lighting conditions
- Can be used from mating to few km range

FLASH LIDAR & TARGET S/C

Range noise ~ 1% of range (from R. Rohrschneider at Ball)

Approach Trajectory

- Leg 1: 1.1km to 250m in 30 minutes
- Leg 2: 250m to 20m in 10 minutes
- For most of the approach target dimension is negligible
 - Estimate the position of the center of figure, which is offset from the true center of mass.
- Accuracy is well within requirements with continuous observations

 3σ pos err < 1m at 100m range, vel err < 10cm/s with 1-s updates

Loss of Measurements

Relative Position and Attitude

- Within 250 m start solving for pos + attitude
- Use corners of s/c as feature points
- Assume 1cm 1- σ ranging errors, and 1 pixel 1- σ angle errors
- Range from 20 m to 5 m in 90 s
- We assume features are matched
- Use OLTAE algorithm to get point solution

Filtering

 Use EKF or UKF with OLTAE solutions for position and Gibbs vector as measurements

COE CST Fourth Annual Technical Meeting (ATM4) October 29-30, 2014 COE Center of Exce Commercial Sp

Center of Excellence for Commercial Space Transportation 15

Reports and Papers

 McMahon, J., S. Gehly, and P. Axelrad, "Enhancing Relative Attitude and Trajectory Estimation for Autonomous Rendezvous Using Flash LIDAR," *AIAA/AAS Astrodynamics Specialist Conference*, San Diego, CA, August 4-8, 2014.

LoCrasto, H. and P. Axelrad

- CU_FAA_Task244_Background_Summary_Report_2013-06-19
- CU_FAA_Task244_Mission_Phases_Report_2013-10-01
- CU_FAA_Task244_Requirements_Report_2014-07-24

Conclusions and Future Work

- Continuing to work to identify and quantify key requirements for ARD missions using existing requirements and standards documents and lessons learned from past missions
- Optimize approach trajectories for maximum information gain/robustness
- Currently working on Flash LIDAR image processing for feature identification, using Argos P100 time-of-flight camera

